

Environmental Site Assessment: Detailed Site Investigation for Proposed PlanChange and Future Development at

Fonterra Hautapu, 185 Swayne Road, Cambridge

Rev B

11 March 2024

Job No. 230599

Auckland (09) 835 1740

Northland (09) 982 8053 **Wellington** (04) 896 0675

Christchurch (03) 352 4519

www.soilandrock.co.nz

ENVIRONMENTAL SITE ASSESSMENT: DETAILED SITE INVESTIGATION FOR PROPOSED PLAN CHANGE AND FUTURE DEVELOPMENT AT 185 SWAYNE ROAD, CAMBRIDGE

Job Number:	230599						
Name of Project:	Fonterra Hautapu, 185 Swayne Road, Cambridge						
Client:	Fonterra Co-operative Group Limited						
Author:	Aaron Thorburn, Senior Environmental Advisor, BAppSc						
Reviewer:	Garry Cepe, Senior Environmental Engineer, BEng Civil						
Authoriser:	Jordan Vaughn, Technical Director – Contaminated Land, MSc Geology, CEnvP						
Document Version:	В						
Published:	11 March 2024						
Author Signature:	PP B Smith, S&RC						
Reviewer Signature:	PP L Windross, WWLA						
Authoriser Signature:	PP D Suwejan, CPEng, CMEngNZ, S&RC						

COPYRIGHT:

The information presented in this document is the property of Soil & Rock Consultants. Use or copying of this document in whole or in part without the previous permission of Soil & Rock Consultants imply a breach of copyright.

Executive Summary

Soil & Rock Consultants (S&RC) completed a field investigation and prepared a Detailed Site Investigation for

the proposed plan change and future commercial / industrial development at Fonterra Hautapu, 185 Swayne

Road, Cambridge.

Soil samples were collected from across the site and analysed for Contaminants of Concern, including Heavy

Metals, Organochlorine Pesticides, Polycyclic Aromatic Hydrocarbons and Asbestos.

Groundwater samples were also collected from across the site and analysed for Contaminants of Concern,

including Dissolved Metals, Carbonaceous Biochemical Oxygen Demand, Chloride, Total Kjeldahl Nitrogen,

Nitrite and Nitrate, Total Phosphorus and Cation Profile. Laboratory analytical results reported:

Soil:

There are no identified exceedances of applicable Human Health and Environmental Discharge criteria,

Asbestos was not detected in any of the soil samples,

Most metal concentrations are at background levels, or within the expected range of variability for the

datasets used. The exception is some metals in isolated areas around buildings and the substation in

the southeast of the site.

Similarly, Polycyclic Aromatic Hydrocarbons concentrations are very slightly elevated above detection.

levels (and therefore above background) around one shed.

No organochlorine pesticides were detected in samples tested.

Groundwater:

Total Phosphorus concentrations were detected in all groundwater samples above applicable criteria for

irrigation and general water use,

Sodium concentration in one sample was detected above the Drinking Water Standards criteria,

Heavy Metals concentrations were detected in all groundwater samples, but at concentrations below

applicable criteria,

Chloride was detected in all groundwater samples, but at concentrations below applicable criteria, and

Nitrite and Nitrate Nitrogen were detected in three of the four groundwater samples, but at concentrations

below applicable criteria.

Findings from this report and our 2023 Preliminary Site Investigation are suitable to support the proposed Plan

Change.

Prior to earthworks or future redevelopment:

• A Site Management Plan will be prepared for the site. This will set out earthworks management

requirements with regard to contaminated land, soil disposal options for surplus soils, and set out the

contingency procedure should unexpected contamination be identified,

All soils can be reused from a contamination perspective. In terms of surplus soil disposal, most topsoil

and natural ground is expected to be suitable for cleanfill disposal. Isolated areas of topsoil around the

dwelling and sheds will require disposal to a managed fill site if surplus to site needs.

Shallow groundwater beneath the site is not intended for potable use and the anticipated future

redevelopment of the site comprises commercial / industrial use. However, in the event that groundwater

is intercepted by earthworks the potential risk presented by its phosphorus content will need to be

evaluated further before discharge to surface water can be undertaken.

Our findings, conclusion and recommendations are detailed in the following report and appendices.

Detailed Site Investigation

Table of Contents

Execut	tive Summary	i
1.0	Introduction	1
1.1	Limitations	2
1.2	Site Description	2
1.3	Proposed Development	2
1.4	Project Scope	2
2.0	Geology, Surface Water and Groundwater	3
3.0	Previous Environmental Investigation	4
4.0	Contamination Investigation	4
4.1	Identified Contaminants of Concern	4
4.2	Soil Investigation	5
4.3	Soil Sampling Protocol	8
4.4	Groundwater Monitoring Event	8
5.0	Regulations	10
6.0	Soil Assessment Criteria	11
7.0	Soil Analytical Results	12
8.0	Quality Assurance / Quality Control	24
9.0	Groundwater Assessment Criteria	25
10.0	Groundwater Analytical Results	26
11.0	Conceptual Site Model	28
12.0	Regulatory Implications	29
13.0	Conclusion	30
14.0	Recommendations	31

Appendices:

Appendix A: Site Plan

Appendix B: Photographic Documentation

Appendix C: Laboratory Analytical Results and Chain of Custody Documentation

1.0 Introduction

Soil & Rock Consultants (S&RC) were engaged by Fonterra Co-operative Group Limited to undertake a Detailed Site Investigation (DSI) in association with the proposed plan change and future commercial / industrial development at Fonterra Hautapu, 185 Swayne Road, Cambridge. The 'site' is shown in Figure 1 below and in S&RC Drawing 230599 / 1 provided in Appendix A.

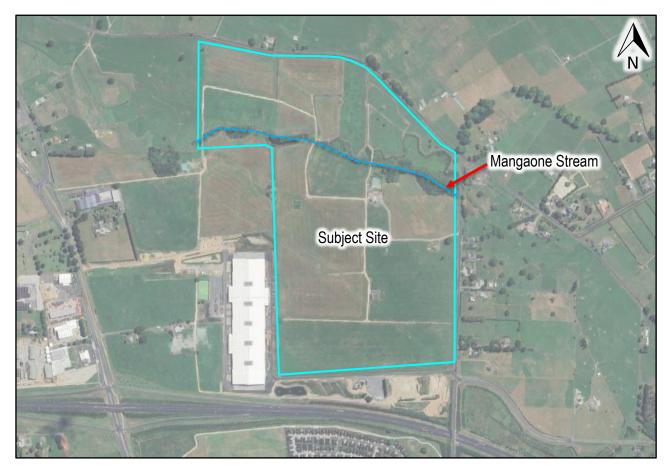


Figure 1: Site Location (Waikato Regional Council GeoMaps Website)

This report comprises a DSI prepared in accordance with Ministry for the Environment's (MfE) guidelines for contaminated site investigations, National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health (NES) Regulations 2011 for contaminated sites and Waipa District Council and Waikato Regional Council requirements.

The investigation and reporting have been prepared, reviewed, and authorised by Suitably Qualified and Experienced Practitioners (SQEP), as required under the NES.

1.1 Limitations

This report has been prepared by S&RC for the sole benefit of Fonterra Co-operative Group Limited (the client),

with respect to the proposed plan change at Fonterra Hautapu, 185 Swayne Road, Cambridge and the brief

given to us.

This report may be used by Waipa District Council and / or Waikato Regional Council or their appointed

Consultants, if required, and may be relied upon when considering a Resource Consent application in

association with the with the proposed plan change and future commercial / industrial development.

The data and / or opinions contained in this report may not be used in other contexts or for any other purpose

or by any other party without our prior review and agreement. This report may only be read or transmitted in its

entirety, including the appendices.

1.2 Site Description

The subject site is legally described as Lot 2 DP 529042, covering an area of 713,759m². Under the Waipa

District Plan, the site is zoned 'Rural'.

The site is predominantly undeveloped with a dwelling and associated structures on the eastern boundary, a

water treatment facility and storage / laydown area in the centre of the site and a recently constructed substation

facility towards the southern boundary. The balance of the site is pastureland.

1.3 Proposed Development

Based on information provided to us the proposed plan change is to allow for the future development of the site

for commercial / industrial purposes. Development plans are not available at this time.

1.4 Project Scope

This investigation comprises a DSI, including the following:

• Review from S&RC's previous environmental investigation (Ref. 221000, Environmental Site

Assessment – Preliminary Site Investigation for Proposed Plan Change and Future Development at 185

Swayne Road, Cambridge, S&RC, 17 July 2023),

Collection and laboratory analysis of soil samples for identified Contaminants of Concern (CoC),

Collection and laboratory analysis of groundwater samples from groundwater monitoring wells installed

across the site in June 2023,

Interpretation of laboratory analytical results and DSI reporting (this report).

2.0 Geology, Surface Water and Groundwater

According to the GNS Science New Zealand Geology Web Map, 1:250,000 Scale, the site is underlain by river deposits of the Hinuera Formation of the Tauranga Group, running east to west near the northern boundary of the site is underlain by Holocene river deposits. A geologic map of the site and surrounding area is provided in Figure 2 below.

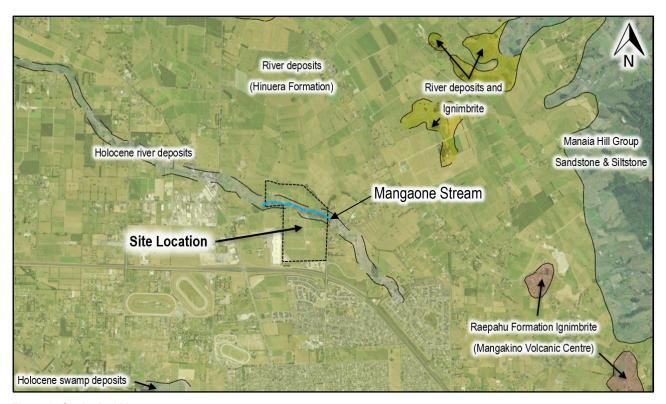


Figure 2: Geological Map (Source: GNS WebMaps Website)

S&RC undertook a geotechnical investigation in June 2023, topsoil was encountered to a maximum depth of 0.3m below ground level (bgl). Fill was encountered in the northern portion of the site near the banks of the floodplain (Mangaone Stream) to 0.5m bgl, underlain by alluvial deposits of the Hinuera Formation (Ref. 230322, Geotechnical Investigation for Proposed Private Plan Change at Fonterra Hautapu, 195 Swayne Road, Cambridge, S&RC, 1 September 2023).

The site surface and surrounding area are near level with a gradual slope towards the northwest. Surface water runoff from the site is expected to dissipate naturally through the vegetated area, flow into the Mangaone Stream or into the roadside drains alongside Zig Zag and Swayne roads to the north and east of the site. Surface water ponding was observed across the site following heavy rainfall in the days preceding the DSI investigation.

Mangaone Stream is located on the northern part of the site flowing east to west across the site, the stream then flows northwest discharging to the Waikato River in the southern suburbs of Hamilton. The Waikato River flows north to northwest discharging into the Tasman Sea and south to southeast discharging into Lake Taupo.

During S&RC's geotechnical investigation / groundwater assessment completed in June and July 2023, groundwater was encountered from depths ranging between 0.1m and 3.2m bgl. Based on the site and

surrounding topography, groundwater flow direction beneath the site is expected to be to the north to northwest

towards Mangaone Stream.

3.0 Previous Environmental Investigation

In July 2023, S&RC completed a Preliminary Site Investigation (PSI) for the site (Ref. 220599, Environmental

Site Assessment – Preliminary Site Investigation for Proposed Plan Change and Future Development at 185

Swayne Road, Cambridge, S&RC, 17 July 2023). The following Hazardous Activities and Industries List (HAIL)

potential activities/industries were identified for the site:

Potential bulk storage or use of pesticides / potential overspray of pesticides from nearby properties

(HAIL Cat. A.10 and H),

Potential contamination from possible Asbestos / ACM in historical buildings (HAIL Cat. E.1),

Wastewater irrigation onto site from nearby Fonterra Hautapu facility (HAIL Cat. H), and

Potential contamination from Lead-based paint use on historical buildings (HAIL Cat. I).

Based on findings from S&RC's July 2023 PSI, a DSI (this investigation) was recommended for the site.

4.0 Contamination Investigation

4.1 Identified Contaminants of Concern

220599, Environmental Site Assessment – Preliminary Site Investigation for Proposed Plan Change and Future

The site was identified for potential soil contamination through the desktop phase of this investigation (Ref.

Development at 185 Swayne Road, Cambridge, S&RC, 17 July 2023). Of relevance to the site history, it was

concluded that potential Contaminants of Concern (CoC) for the site included:

Heavy Metals

Organochlorine Pesticides (OCP)

Polycyclic Aromatic Hydrocarbons (PAH)

Asbestos

Detailed Site Investigation

Fonterra Hautapu, 185 Swayne Road, Cambridge

Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

4.2 Soil Investigation

Soil sampling was completed at the site on 29 June 2023. Forty-seven soil samples (41 shallow soil samples [16 shallow soil samples analysed as five composite samples and 25 shallow samples collected as individual samples and Quality Assurance / Quality Control (QA / QC) purposes] and six individual deeper soil samples) were collected. All soil samples were submitted to the laboratory (Eurofins) for analysis of Heavy Metals, OCP, PAH and / or Asbestos.

Soil sampling details are described in Table 1 below. Sampling locations are shown on S&RC Drawings 230599 / 2 through 230599 / 4 provided in Appendix A. Photographic documentation from the investigation is provided in Appendix B.

Table 1 - Sample Descriptions

Date	Sample ID	Sample Description	Depth (m bgl)	Soil Description	Analyses Performed
29 June 2023	SWA	\-SS01	0 - 0.1	SILT w/ trace clay and sand, brown, moist (Topsoil)	Heavy Metals and OCP
29 June 2023	SWA	A-SS02	0 - 0.1	SILT w/ trace clay and sand, brown, moist (Topsoil)	Heavy Metals and OCP
29 June 2023	SWA	A-SS03	0 - 0.1	Sandy SILT, dark brown w/ white streaks, moist (Topsoil)	Heavy Metals and OCP
29 June 2023	SWA	A-SS04	0 - 0.1	Sandy SILT w/ trace clay, brown, moist (Topsoil)	Heavy Metals and OCP
29 June 2023	SWA	A-SS05	0 - 0.1	Sandy SILT, dark brown w/ white speckles, moist (Topsoil)	Heavy Metals and OCP
29 June 2023	June 2023 SWA-SS06 0 - 0.1 SILT w/ trace clay and sand, brown w/ white speckles, saturated (Topsoil)		brown w/ white speckles,	Heavy Metals and OCP	
29 June 2023	3 SWA-SS07		0 - 0.1	SILT w/ trace clay and sand, brown w/ white speckles, moist (Topsoil)	Heavy Metals and OCP
29 June 2023	SWA	A-SS08	0 - 0.1	Sandy SILT, dark brown w/ white speckles, moist (Topsoil)	Heavy Metals and OCP
29 June 2023	2023 SWA-SS09 (0 - 0.1	Sandy SILT, dark brown w/ white speckles, moist (Topsoil)	Heavy Metals and OCP
29 June 2023	SWA	A-SS10	0 - 0.1	SILT w/ trace clay and sand, brown, moist (Topsoil)	Heavy Metals and OCP
29 June 2023	SWA	A-SS11	0 - 0.1	SILT w/ trace clay and sand, brown, moist (Topsoil)	Heavy Metals and OCP
29 June 2023	June 2023 SWA-SS12		0 - 0.1	SILT w/ trace clay and sand, brown w/ white speckles, moist (Topsoil)	Heavy Metals and OCP
29 June 2023	SWA	N-SS13	0 - 0.1	SILT w/ trace clay and sand, brown orange w/ white speckles, moist (Topsoil)	Heavy Metals and OCP

Date	Sample ID	Sample	Depth	Soil Description	Analyses Performed	
29 June 2023	-	Description A-SS14	(m bgl) 0 - 0.1	SAND w/ some silt and trace clay, dark brown w/ white	Heavy Metals and OCP	
29 June 2023	SWA	A-SS15	0 - 0.1	speckles, moist (Topsoil) Sandy SILT, dark brown w/ white speckles, moist (Topsoil)	Heavy Metals and OCP	
29 June 2023	SWA	A-SS16	0 - 0.1	SILT w/ some clay, brown orange, moist (Topsoil)	Heavy Metals and OCP	
29 June 2023	SWA	-SS17	0 - 0.1	Sandy SILT, dark brown w/ white speckles, moist (Topsoil)	Heavy Metals and OCP	
29 June 2023	SWA	-SS18	0 - 0.1	Sandy SILT, dark brown w/ white speckles, moist (Topsoil)	Heavy Metals and OCP	
29 June 2023	SWA	\-SS19	0 - 0.1	SILT w/ some clay and sand, brown w/ white speckles, moist (Topsoil)	Heavy Metals and OCP	
29 June 2023	SWA	\-SS20	0 - 0.1	SAND w/ some silt and trace clay, dark brown w/ white speckles, moist (Topsoil)	Heavy Metals and OCP	
29 June 2023	SWA-SS21 (duplicate) SWA-SS21 (duplicate) SPECKIES, MOIST (10p: SAND w/ some silt and clay, dark brown w/ w speckles, moist (Top:				Heavy Metals and OCP	
	SWA-SS22		0 - 0.1	Sandy SILT, grey brown, moist (Natural)	Heavy Metals, OCP, PAH and Asbestos	
29 June 2023	SWA-SS24	brown, moist (Topsoil) 1 Sandy SILT w/ some clay,		Sandy SILT w/ some clay, brown, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos	
	SWA-SS25			Heavy Metals, OCP, PAH and Asbestos		
29 June 2023	SWA	-SS23	0.5	SAND w/ some silt and trace clay, grey, moist (Natural)	Heavy Metals, OCP, PAH and Asbestos	
	SWA-SS26		0 - 0.1	Sandy SILT, brown grey w/ white speckles, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos	
20 June 2022	SWA-SS27	SWA-SS27 Composite #		SILT w/ some sand, brown orange w/ white speckles, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos	
29 June 2023	SWA-SS29	2	0 - 0.1	Sandy SILT, grey brown w/ white speckles, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos	
	SWA-SS30		0 - 0.1	SAND w/ some silt, brown orange w/ white speckles, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos	
29 June 2023	SWA	n-SS28	0.5	SAND w/ some silt, brown orange w/ white speckles, moist (Natural)	Heavy Metals, OCP, PAH and Asbestos	
29 June 2023	SWA-SS31		0 - 0.1	Sandy SILT w/ some clay, dark orange w/ white speckles, moist (Topsoil)	Heavy Metals and OCP	
29 June 2023	SWA-SS3	2 (duplicate)	0 - 0.1	Sandy SILT w/ some clay, dark orange w/ white speckles, moist (Topsoil)	Heavy Metals and OCP	
29 June 2023	SWA-SS33	Composite #	0 - 0.1	SILT w/ some clay, brown grey, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos	

Date	Sample ID	Sample Description	Depth (m bgl)	Soil Description	Analyses Performed
	SWA-SS35		0 - 0.1	SILT w/ some clay, brown, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos
	SWA-SS36		0 - 0.1	Sandy SILT w/ trace clay, brown w/ white speckles, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos
	SWA-SS38		0 - 0.1	Sandy SILT w/ trace clay, brown w/ white speckles, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos
29 June 2023	SWA	A-SS34	0.5	SILT w/ some clay, brown grey, dry (Natural)	Heavy Metals, OCP, PAH and Asbestos
29 June 2023	SWA	A-SS37	0.5	SAND w/ some silt, brown w/ white speckles, moist (Natural)	Heavy Metals, OCP, PAH and Asbestos
29 June 2023	SWA-SS39	SWA-SS39 Composite #		SAND w/ some silt and trace clay, brownish grey w/ white speckles, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos
29 June 2023	SWA-SS42	4	0 - 0.1	SAND w/ some silt and trace clay, brown w/ white speckles, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos
29 June 2023	SWA	\-SS41	0.1	SAND w/ some silt and trace clay, orange brown w/ white speckles, moist (Natural)	Heavy Metals, OCP, PAH and Asbestos
29 June 2023	SWA-SS43		0 - 0.1	SILT w/ some clay, brown w/ white speckles, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos
29 June 2023	SWA-SS44	Composite #	0 - 0.1	SILT w/ some clay and sand, brown, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos
29 June 2023	SWA-SS46	3	0 - 0.1	SILT w/ some clay and sand, brown orange w/ white speckles, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos
29 June 2023	SWA-SS45		0.5	SAND w/ some silt and trace clay, grey orange, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos
29 June 2023	SWA-SS47		0 - 0.1	SILT w/ some clay and sand, brown w/ white speckles, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos
29 June 2023	SWA-SS4	8 (duplicate)	0 - 0.1	Sandy SILT w/ trace clay, orange w/ white speckles, moist (Topsoil)	Heavy Metals, OCP, PAH and Asbestos

ID = Identifier OCP = Organochlorine Pesticides m bgl = metres below ground level PAH = Polycyclic Aromatic Hydrocarbons

4.3 Soil Sampling Protocol

Soil samples were collected using a hand auger or trowel. Soil sampling equipment was decontaminated between sampling locations and disposable nitrile gloves were used and replaced between sampling locations in order to prevent cross contamination. All samples were collected in accordance with strict environmental sampling protocols to ensure reliable and representative results.

All sample containers and preservatives, where applicable, were supplied by the subcontract laboratory and were consistent with the specifications provided in Section 6.4 – Sample Handling, of the Contaminated Land Management Guidelines No. 5 – Site Investigation and Analysis of Soils (MfE, Revised 2021). All samples were labelled with unique identifiers indicating the sampling location. Samples were couriered directly to the laboratory (Eurofins) under continuous Chain of Custody (COC) documentation. Each COC form had a unique laboratory number.

4.4 Groundwater Monitoring Event

In order to assess the potential for groundwater contamination beneath the site at 185 Swayne Road, Cambridge, a groundwater monitoring event (GME) was completed on 2 August 2023. Nine groundwater monitoring wells were identified and gauged. Four of the monitoring wells (PZ02, PZ06, PZ08 and PZ09) were dipped for depth to groundwater and sampled. At five of the monitoring wells (PZ01, PZ03, PZ04, PZ05 and PZ07) groundwater was not encountered (monitoring wells were dry) on the day of monitoring.

Groundwater samples collected were analysed for Dissolved Metals, Carbonaceous Biochemical Oxygen Demand (cBOD), Chloride, Total Kjeldahl Nitrogen (TKN), Nitrite and Nitrate Nitrogen, Total Phosphorus and Cation Profile (Sodium, Calcium, Potassium and Magnesium).

Groundwater sampling details are summarised in Table 2 below. Groundwater monitoring wells are shown on S&RC Drawing 230599 / 5 provided in Appendix A.

Table 2 – Groundwater Sample Descriptions

Sample ID	Date	Analyses Performed		
PZ02	2 August 2023			
PZ06	2 August 2023	Heavy Metals, cBOD, Chloride, TKN, Nitrite and Nitrate Nitrogen, Total Phosphorus and Cation Profile		
PZ08	2 August 2023			
PZ09	2 August 2023	1 Tonic		

ID = Identifier

cBOD = Carbonaceous Biochemical Oxygen Demand

TKN = Total Kjeldahl Nitrogen

Prior to groundwater sample collection, depths to groundwater and monitoring well total depths were measured using an interface probe. Monitoring well data is presented in Table 3 below:

Table 3 – August 2023 Monitoring Well Gauging

Monitoring Well ID	Date	DTW (m BTOC) Well Depth (m BT				
PZ01	2 August 2023	dry				
PZ02	2 August 2023	1.28	3.63			
PZ03	2 August 2023	d	ry			
PZ04	2 August 2023	dry				
PZ05	2 August 2023	d	ry			
PZ06	2 August 2023	1.97	3.74			
PZ07	2 August 2023	d	ry			
PZ08	2 August 2023	3.59	3.91			
PZ09	2 August 2023	2.49	2.91			

ID = Identifier

DTW = Depth to water

m BTOC = metres below top of casing

Monitoring wells were purged using a peristaltic pump. Groundwater parameters (temperature, pH, Conductivity, Oxidation-Reduction Potential [ORP] and Dissolved Oxygen [DO]) were measured along the sample line using a flow-through cell and YSI ProPlus water quality meter.

Final groundwater quality parameters (i.e. final readings before groundwater parameters stabilised or monitoring wells were purged dry) are provided in Table 4. Well purging / sampling forms are provided in Appendix C.

Table 4 – August 2023 Groundwater Parameters

Well ID	Temperature (°C)	рН	Conductivity (µS/cm)	ORP (mV)	DO (mg/L)	Comments
PZ02	12.0	6.5	906	78.1	0.33	Parameters close to stabilising prior to well going dry – 1.75L purged
PZ06	13.8	5.78	556.1	237.7	0.92	Parameters close to stabilising prior to well going dry – 2L purged
PZ08	14.8	6.75	35.9	253.3	3.54	Parameters not stabilised prior to well going dry – 0.5L purged
PZ09	12.4	7.69	133.8	147.7	5.09	Parameters not stabilised prior to well going dry – 0.5L purged

Monitoring wells were either dry or were purged dry as part of the low-flow sampling technique undertaken.

Groundwater samples were collected after adequate recharge time was given to allow for groundwater sampling

to be undertaken.

Monitoring and sampling equipment (interface probe and water quality meter) were decontaminated between

sampling locations and disposable nitrile gloves, sample tubing and filters (for dissolved metals analysis) were

used and replaced between sampling locations in order to prevent cross contamination. All samples were

collected in accordance with strict environmental protocols to ensure reliability and representative results.

All sample containers and preservatives, where applicable, were supplied by the subcontractor laboratory and

were consistent with the specifications provided in Section 6.4 – Sample Handling, of the Contaminated Land

Management Guidelines No. 5 – Site Investigation and Analysis of Soils (MfE, Revised 2021).

All samples were labelled with unique identifiers indicating the sampling locations. Samples were couriered

directly to the laboratory (Hill Laboratories) under continuous COC documentation. Each COC form had a unique

laboratory number.

5.0 Regulations

Within the Waikato Region, investigations of contaminated and potentially contaminated sites are governed by

rules under:

MfE NES: National Environmental Standard for Assessing and Managing Contaminants in Soil to

Protect Human Health (MfE, 2012), and

New Zealand Guidelines for Assessing and Managing Asbestos in Soil (2017).

Background values (derived from Landcare Research's Predicted Background Concentrations database) are

also used in determining if the NES applies to a site, and also the options for offsite soil disposal.

While part of our report assesses potential planning and Resource Consent requirements from relevant

authorities, these sections are provided for reference only. Guidance / clarification should be sought from an

Environmental Planning Specialist.

National Environmental Standard – Contaminants in Soil

The Resource Management Regulations 2011, National Environmental Standard for Assessing and Managing

Contaminants in Soil to Protect Human Health (NES) came into force on 1 January 2012, with Contaminated

Land Management Guidelines revised in 2011 (No. 2) and 2021 (No. 1 and 5).

The NES for contaminants in soil incorporates by reference MfE contaminated land documents, including MfE

Contaminated Land Management Guidelines for the investigation, assessment, and reporting of contaminated

land within New Zealand. These documents are aimed to provide national consistency in the reporting of

contaminated site information. These documents are:

Contaminated Land Management Guidelines (No. 1, 2 and 5),

HAIL,

Methodology of Deriving Soil Guideline Values Protective of Human Health, and

Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand

(MfE, revised 2011).

Copies of the above guideline documents are available at www.mfe.govt.nz.

New Zealand Guidelines for Assessing and Managing Asbestos in Soil

The New Zealand Guidelines for Assessing and Managing Asbestos in Soil were published in 2017. The

guidelines provide direction around identifying, assessing and managing Asbestos in soil in New Zealand and

establish Human Health Soil Guideline Values (SGV).

6.0 Soil Assessment Criteria

The site is zoned 'Rural' and predominantly undeveloped with a dwelling and associated structures on the

eastern boundary, a water treatment facility and storage / laydown area in the centre of the site, and a recently

constructed substation facility towards the southern boundary.

Based on information provided to us the proposed plan change is to allow for the future development of the site

for commercial / industrial purposes. For this assessment, soil analytical results were compared against:

NES Human Health criteria for Commercial / Industrial use,

PHG Human Health criteria for Commercial / Industrial use, and

Asbestos SGV for Commercial and Industrial sites.

As alluvial deposits of the Hinuera Formation (Tauranga Group) were encountered, soil analytical results were

also compared against:

Upper 95% Predicted Soil Concentrations for Sandstone soils.

Detailed Site Investigation

7.0 Soil Analytical Results

Forty-seven soil samples (41 shallow soil samples [16 shallow soil samples analysed as five composite samples

and 25 shallow samples collected for individual and QA / QC purposes] and six individual deeper soil samples)

were collected.

All soil samples were submitted to the laboratory (Eurofins) for analysis of Heavy Metals, OCP, PAH and

Asbestos. Following receipt of laboratory results a further nine soil samples were analysed for Heavy Metals and

PAH due to Composite # 2, 3 and 4 exceeding applicable Background Level criteria.

Laboratory analytical results reported:

All CoC concentrations complied with MfE NES and / or PHG Human Health criteria,

Asbestos was not detected in any of the soil samples, and

Heavy Metals and/or PAH concentrations were slightly above Background Levels in topsoil around the

dwelling and sheds in the south of the site, and also in fill placed around the substation footprint. None

of these exceedances present a human health or environmental risk.

There are other minor exceedances of background criteria for some metals in topsoil across paddocks.

However, the exceedances are very minor and are more likely to reflect variability in natural background

conditions than impact by contaminating activities.

A single detection of DDT (SWA-SS16) is at the laboratory limit of reporting and is therefore considered

insignificant in the context of the wider dataset.

Laboratory analytical results are summarised in Table 5 below. Soil sampling locations are shown on S&RC

Drawing 230599 / 2 provided in Appendix A. Laboratory analytical results and COC documentation are provided

in Appendix C.

Detailed Site Investigation

Table 5 – Soil Analytical Results

				Test Analysis	Levels (mg/kg)		MfE	
Sample Reference		SWA-SS01	SWA-SS02	SWA-SS03	SWA-SS04	SWA-SS05	SWA-SS06		De alamana d Call
Sample	e Soil Type	SILT	SILT	Sandy SILT	Sandy SILT	Sandy SILT	SILT	NIEC 1	Background Soil Concentrations 4
Sam	Sample Date			29 Ju	ne 2023			NES 1	Concentrations
Sample	e Depth (m)	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1		
	As	11	9.7	8.1	12	11	3.7	70	12.67
	Cd	0.18	0.23	0.29	0.51	0.37	0.24	1,300	0.28
	Cr	14	10	8.5	11	14	13	6,300	60.5
Heavy	Cu	11	11	7.5	8.1	23	8.2	10,000	40.17
Metals	Pb	13	12	17	23	20	9.8	3,300	30.08
	Hg	0.48	0.12	0.13	0.16	0.48	0.13	4,200	0.45
	Ni	6.3	4.3	3.7	4.5	4.1	5.7	3,000 5	32.88
	Zn	84	64	48	56	82	78	35,000 ⁵	101.8
	ΣDDT	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>1,000</th><th>-</th></mdl<>	1,000	-
OCD	Aldrin	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th></mdl<>	160	-
OCP	Dieldrin	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th></mdl<>	160	-
	Lindane	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<>	14,180 ⁶	-

				Test Analysis	Levels (mg/kg)		MfE	
Sample Reference		SWA-SS07	SWA-SS08	SWA-SS09	SWA-SS10	SWA-SS11	SWA-SS12		Dealermound Call
Sampl	e Soil Type	SILT	Sandy SILT	Sandy SILT	SILT	SILT	Sandy SILT	NEC 1	Background Soil Concentrations 4
Sam	Sample Date			29 Ju	ne 2023			NES 1	Concentiations
Sample	e Depth (m)	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1		
	As	6.4	9.5	9	4.4	6	6.9	70	12.67
	Cd	0.29	0.39	0.39	0.22	0.24	0.52	1,300	0.28
	Cr	11	12	12	10	13	14	6,300	60.5
Heavy	Cu	10	15	14	14	24	29	10,000	40.17
Metals	Pb	18	14	13	16	16	16	3,300	30.08
	Hg	0.3	0.11	0.13	0.53	0.7	0.43	4,200	0.45
	Ni	5.3	4.9	5.1	4.4	7.3	9	3,000 5	32.88
	Zn	68	78	79	78	130	150	35,000 ⁵	101.8
	ΣDDT	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>1,000</th><th>-</th></mdl<>	1,000	-
ОСР	Aldrin	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th></mdl<>	160	-
UCP	Dieldrin	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th></mdl<>	160	-
	Lindane	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<>	14,180 ⁶	-

				Test Analysis	Levels (mg/kg)		MfE	
Sample Reference		SWA-SS13	SWA-SS14	SWA-SS15	SWA-SS16	SWA-SS17	SWA-SS18		Dealsone de Cail
Sample	e Soil Type	SILT	SAND	Sandy SILT	SILT	Sandy SILT	Sandy SILT	NES 1	Background Soil Concentrations 4
Sam	ple Date			29 Ju	ne 2023			INEO '	Concentiations
Sample	e Depth (m)	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1		
	As	4.9	6.7	9.2	5.1	8.4	5.3	70	12.67
	Cd	0.21	0.12	0.34	0.19	0.38	0.25	1,300	0.28
	Cr	15	7.3	15	15	16	14	6,300	60.5
Heavy	Cu	26	9.4	30	21	30	27	10,000	40.17
Metals	Pb	13	12	15	14	20	14	3,300	30.08
	Hg	0.86	0.29	0.72	0.83	0.9	0.81	4,200	0.45
	Ni	5.7	2.6	7.7	5.4	8	7.2	3,000 5	32.88
	Zn	130	52	150	120	150	130	35,000 ⁵	101.8
	ΣDDT	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>0.02</th><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>0.02</th><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.02</th><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<></th></mdl<>	0.02	<mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>1,000</th><th>-</th></mdl<>	1,000	-
ОСР	Aldrin	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th></mdl<>	160	-
UCP	Dieldrin	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th></mdl<>	160	-
	Lindane	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>14,180 ⁶</th><th>-</th></mdl<>	14,180 ⁶	-

			Test A	nalysis Levels (mg/kg)		MfE			
Sample	Reference	SWA-SS19	SWA-SS20	SWA-SS21 (dup of SWA-SS20)	Composite # 1 (SS22, SS24 & SS25)		PHG ²			
Sample	Sample Soil Type			SAND	SAND / SILT / Sandy SILT	NES 1	01	Sandy	Asbestos SGV ³	Background Soil Concentrations 4
Guidelir	ne Soil Type	-		SAND	SAND / Sandy SILT		Sand	Silt		
Sam	ple Date			29 June 2023						
Sample	e Depth (m)	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1		<1m	<1m		
	As	5.3	13	9.9	12	70	-	-	ı	12.67
	Cd	0.23	0.35	0.65	0.11	1,300	-	-	ı	0.28
	Cr	17	14	13	8.5	6,300	-	-	-	60.5
Heavy	Cu	23	21	18	14	10,000	-	-	-	40.17
Metals	Pb	15	15	16	8.7	3,300	-	-	-	30.08
	Hg	0.75	0.47	0.45	0.05	4,200	-	-	-	0.45
	Ni	6.4	7.9	6.1	3	3,000 5	-	-	-	32.88
	Zn	140	140	120	57	35,000 ⁵	-	-	-	101.8
	ΣDDT	<mdl< th=""><th>0.02</th><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	0.02	<mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	1,000	-	-	-	-
ОСР	Aldrin	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	160	-	-	-	-
UCP	Dieldrin	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	160	-	-	-	-
	Lindane	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	14,180 ⁶	-	-	-	-
	BaP Eq.	-	-	-	<mdl< th=""><th>35</th><th>_ 7</th><th>_ 7</th><th>-</th><th>-</th></mdl<>	35	_ 7	_ 7	-	-
PAH	Naphthalene	-	-	-	<mdl< th=""><th>-</th><th>(190) ^v</th><th>(210) ^v</th><th>-</th><th>-</th></mdl<>	-	(190) ^v	(210) ^v	-	-
	Pyrene	-	-	-	<mdl< th=""><th>-</th><th>(20,000)</th><th>(20,000)</th><th>-</th><th>-</th></mdl<>	-	(20,000)	(20,000)	-	-
	ND/D	ND	ND	ND	ND	-	-	-	-	
Asbestos	ACM	-	-	-	-	-	-	-	0.05	-
	FA/AF	-	-	-	-	-	-	-	0.001	-

			Test Analysis	Levels (mg/kg)			MfE			
Sample	e Reference	Composite # 2 (SS26, SS27,	Composite # 4		osite # 4 ample re-tests)		PH	G ²		
-		SS29 & SS30)	(SS39 & SS42)	SWA-SS39	SWA-SS42					
Sample	e Soil Type	Sandy SILT / SILT / SAND	SAND	SAND	SAND	NES 1		Candy	Asbestos SGV ³	Background Soil Concentrations ⁴
Guidelir	ne Soil Type	Sandy SILT / SAND	SAND	SAND	SAND		Sand	Sandy Silt		
Sam	ple Date		29 Ju	ne 2023						
Sample	e Depth (m)	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	<1m		<1m		
	As	8.6	18	24	14	70	-	-	-	12.67
	Cd	0.26	0.78	1.1	0.36	1,300	-	-	-	0.28
	Cr	16	22	23	19	6,300	-	-	-	60.5
Heavy	Cu	15	40	57	21	10,000	-	-	-	40.17
Metals	Pb	11	360	330	350	3,300	-	-	-	30.08
	Hg	0.11	0.27	0.36	0.32	4,200	-	-	-	0.45
	Ni	6.7	8.9	11	6.8	3,000 5	-	-	-	32.88
	Zn	100	410	550	290	35,000 ⁵	-	-	-	101.8
	ΣDDT	<mdl< th=""><th><mdl< th=""><th>-</th><th>-</th><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th>-</th><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	-	-	1,000	-	-	-	-
OCP	Aldrin	<mdl< th=""><th><mdl< th=""><th>-</th><th>-</th><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th>-</th><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	-	-	160	-	-	-	-
001	Dieldrin	<mdl< th=""><th><mdl< th=""><th>-</th><th>-</th><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th>-</th><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	-	-	160	-	-	-	-
	Lindane	<mdl< th=""><th><mdl< th=""><th>-</th><th>-</th><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th>-</th><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	-	-	14,180 ⁶	-	-	-	-
	BaP Eq.	<mdl< th=""><th>0.05</th><th><mdl< th=""><th><mdl< th=""><th>35</th><th>_ 7</th><th>_ 7</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	0.05	<mdl< th=""><th><mdl< th=""><th>35</th><th>_ 7</th><th>_ 7</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>35</th><th>_ 7</th><th>_ 7</th><th>-</th><th>-</th></mdl<>	35	_ 7	_ 7	-	-
PAH	Naphthalene	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>-</th><th>(190) ^v</th><th>(210) ^v</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>-</th><th>(190) ^v</th><th>(210) ^v</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>-</th><th>(190) ^v</th><th>(210) ^v</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th>(190) ^v</th><th>(210) ^v</th><th>-</th><th>-</th></mdl<>	-	(190) ^v	(210) ^v	-	-
	Pyrene	<mdl< th=""><th><mdl< th=""><th>0.12 8</th><th><mdl< th=""><th>-</th><th>(20,000)</th><th>(20,000)</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.12 8</th><th><mdl< th=""><th>-</th><th>(20,000)</th><th>(20,000)</th><th>-</th><th>-</th></mdl<></th></mdl<>	0.12 8	<mdl< th=""><th>-</th><th>(20,000)</th><th>(20,000)</th><th>-</th><th>-</th></mdl<>	-	(20,000)	(20,000)	-	-
	ND/D	ND	ND	-	-	-	-	-	-	-
Asbestos	ACM	_	-	-	-	-	-	-	0.05	-
	FA/AF	-	-	-	-	-	-	-	0.001	-

			Test Ana	llysis Levels (n	ng/kg)			MfE			
Sample	e Reference	Composite # 3 (SS33, SS35,		•	site # 3 mple re-tests)			PHG ²			Background Soil
Campie	e reference	SS36 & SS38)	SWA-SS33	SWA-SS35	SWA-SS36	SWA-SS38				Asbestos	
Sample	e Soil Type	SILT / Sandy SILT					NES 1	Sand		SGV ³	Concentrations 4
Guidelir	ne Soil Type	Sandy SILT	Sandy SILT	Sandy SILT	Sandy SILT	Sandy SILT			Sandy Silt		
	ple Date			29 June 2023							
Sample	e Depth (m)	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1		<1m	<1m		
	As	11	11	17	4.6	9.2	70	-	-	-	12.67
	Cd	0.36	0.23	0.17	0.4	0.33	1,300	-	-	-	0.28
	Cr	8.3	7.1	7.6	6.9	6.5	6,300	-	-	-	60.5
Heavy	Cu	11	8.5	5.6	8.9	9.4	10,000	-	-	-	40.17
Metals	Pb	14	11	11	13	12	3,300	-	-	-	30.08
	Hg	0.21	0.2	0.27	0.23	0.17	4,200	-	-	-	0.45
	Ni	3.4	2.7	2.7	2.7	2.5	3,000 ⁵	-	-	-	32.88
	Zn	67	55	43	68	51	35,000 ⁵	-	-	-	101.8
	ΣDDT	<mdl< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>1,000</td><td>-</td><td>-</td><td>-</td><td>-</td></mdl<>	-	-	-	-	1,000	-	-	-	-
ОСР	Aldrin	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	-	-	-	-	160	-	-	-	-
UCP	Dieldrin	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	-	-	-	-	160	-	-	-	-
	Lindane	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	-	-	-	-	14,180 ⁶	-	-	-	-
_	BaP Eq.	<mdl< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>35</td><td>- 7</td><td>_ 7</td><td>-</td><td>-</td></mdl<>	-	-	-	-	35	- 7	_ 7	-	-
PAH	PAH Naphthalene	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>(190) ^v</th><th>(210) v</th><th>-</th><th>-</th></mdl<>	-	-	-	-	-	(190) ^v	(210) v	-	-
	Pyrene	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>(20,000)</th><th>(20,000)</th><th>-</th><th>-</th></mdl<>	-	-	-	-	-	(20,000)	(20,000)	-	-
	ND/D	ND	-	-	-	-	-	-	-	-	-
Asbestos	ACM	-	-	-	-	-	-	-	-	0.05	-
	FA/AF	-	-	-	-	-	-	-	-	0.001	-

			Test Analysis	Levels (mg/kg)			MfE			
Sample	e Reference	Composite # 5 (SS43, SS44 &	(individual sample re-tests)				PH	G ²		
		SS46)	SWA-SS43	SWA-SS44	SWA-SS46				Asbestos	Background Soil
Sample	e Soil Type	SILT	SILT	SILT	SILT	NES 1		Candy	SGV ³	Concentrations ⁴
Guidelir	ne Soil Type	Sandy SILT	Sandy SILT	Sandy SILT	Sandy SILT		Sand	Sandy Silt		
Sam	ple Date		29 Ju	ne 2023				Oilt		
Sample	e Depth (m)	0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1		<1m	<1m		
	As	17	18	9.8	4.2	70	-	-	•	12.67
	Cd	0.69	41	28	66	1,300	-	-	•	0.28
	Cr	19	7.1	7.2	6.8	6,300	-	-	-	60.5
Heavy	Cu	37	7.9	6.3	8.6	10,000	-	-	-	40.17
Metals	Pb	120	13	10	12	3,300	-	-	-	30.08
	Hg	0.17	0.16	0.23	0.22	4,200	-	-	-	0.45
	Ni	11	2.4	2.6	2.8	3,000 ⁵	-	-	ı	32.88
	Zn	190	52	40	62	35,000 ⁵	-	-	ı	101.8
	ΣDDT	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>1,000</th><th>-</th><th>-</th><th>•</th><th>-</th></mdl<>	-	-	-	1,000	-	-	•	-
ОСР	Aldrin	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	-	-	-	160	-	-	-	-
OCF	Dieldrin	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	-	-	-	160	-	-	-	-
	Lindane	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	-	-	-	14,180 ⁶	-	-	-	-
	BaP Eq.	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>35</th><th>_ 7</th><th>_ 7</th><th>-</th><th>-</th></mdl<>	-	-	-	35	_ 7	_ 7	-	-
PAH	Naphthalene	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>(190) ^v</th><th>(210) ^v</th><th>-</th><th>-</th></mdl<>	-	-	-	-	(190) ^v	(210) ^v	-	-
	Pyrene	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>(20,000)</th><th>(20,000)</th><th>-</th><th>-</th></mdl<>	-	-	-	-	(20,000)	(20,000)	-	-
_	ND/D	ND	-	-	-	-	-	-	-	-
Asbestos	ACM	-	-	-	-	-	-	-	0.05	-
	FA/AF	-	-	-	_	-	-	-	0.001	-

			Test Anal	ysis Levels (mg	ı/kg)		MfE			
Sample	Sample Reference		SWA-SS28	SWA-SS31	SWA-SS32 (dup of SWA-SS31)		PH	G ²	A - b 4	D l
Sample	e Soil Type	SAND	SAND	Sa	andy SILT	NEC 1		Candy	Asbestos SGV ³	Background Soil
Guidelir	ne Soil Type	SAND	SAND	Sa	andy SILT	NES 1	Sand	Sandy Silt		Concentrations ⁴
Sam	ple Date		29	June 2023				Oilt		
Sample	e Depth (m)	0.5	0.5		0 - 0.1		<1m	<1m		
	As	6	6.5	6.4	7.6	70	-	-	-	12.67
	Cd	0.03	0.07	0.71	0.83	1,300	-	-	-	0.28
	Cr	8.4	9.8	12	14	6,300	-	-	-	60.5
Heavy	Cu	5.1	10	45	55	10,000	-	-	-	40.17
Metals	Pb	12	8.9	41	36	3,300	-	-	-	30.08
	Hg	0.08	0.08	0.34	0.37	4,200	-	-	-	0.45
	Ni	3.3	5.9	6.9	9.7	3,000 ⁵	-	-	-	32.88
	Zn	32	43	290	360	35,000 ⁵	-	-	-	101.8
	ΣDDT	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	1,000	-	-	-	-
ОСР	Aldrin	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	160	-	-	-	-
OCF	Dieldrin	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	160	-	-	-	-
	Lindane	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	14,180 ⁶	-	-	-	-
	BaP Eq.	<mdl< th=""><th><mdl< th=""><th>-</th><th>-</th><th>35</th><th>_ 7</th><th>_ 7</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th>-</th><th>35</th><th>_ 7</th><th>_ 7</th><th>-</th><th>-</th></mdl<>	-	-	35	_ 7	_ 7	-	-
PAH	Naphthalene	<mdl< th=""><th><mdl< th=""><th>-</th><th>-</th><th>-</th><th>(190) v</th><th>(210) ^v</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>(190) v</th><th>(210) ^v</th><th>-</th><th>-</th></mdl<>	-	-	-	(190) v	(210) ^v	-	-
	Pyrene	<mdl< th=""><th><mdl< th=""><th>-</th><th>-</th><th>-</th><th>(20,000)</th><th>(20,000)</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th>-</th><th>-</th><th>(20,000)</th><th>(20,000)</th><th>-</th><th>-</th></mdl<>	-	-	-	(20,000)	(20,000)	-	-
	ND/D	ND	ND	ND	ND	-	-	-	-	-
Asbestos	ACM	-	-	-	-	-	-	-	0.05	-
	FA/AF	-	-	-	-	-	-	-	0.001	-

			Test Analysis	Levels (mg/kg)			MfE			
Sample	Sample Reference		SWA-SS37	SWA-SS41	SWA-SS45		PH	G ²		
Sampl	e Soil Type	SILT	SAND	SAND	SAND			Canada	Asbestos	Background Soil
Guidelii	ne Soil Type	Sandy SILT	SAND	SAND	SAND	NES 1	Sand	Sandy Silt	SGV ³	Concentrations ⁴
Sam	ple Date		29 Jun	e 2023				Siit		
Sample	e Depth (m)	0.5	0.5	0.1	0.5		<1m	<1m		
	As	18	21	11	9.6	70	-	-	-	12.67
	Cd	0.04	0.1	0.59	0.07	1,300	-	-	-	0.28
	Cr	12	10	17	14	6,300	-	-	-	60.5
Heavy	Cu	8.4	6.2	26	14	10,000	-	-	-	40.17
Metals	Pb	14	23	97	34	3,300	-	-	-	30.08
	Hg	0.21	0.27	0.17	0.15	4,200	-	-	-	0.45
	Ni	3.5	4.7	6	7	3,000 5	-	-	-	32.88
	Zn	41	63	200	69	35,000 ⁵	-	-	-	101.8
	ΣDDT	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	1,000	-	-	-	-
OCP	Aldrin	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	160	-	-	-	-
OCP	Dieldrin	<mdl< th=""><th><mdl< th=""><th>0.03</th><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.03</th><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	0.03	<mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	160	-	-	-	-
	Lindane	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th><th>-</th></mdl<>	14,180 ⁶	-	-	-	-
	BaP Eq.	<mdl< th=""><th><mdl< th=""><th>0.09</th><th><mdl< th=""><th>35</th><th>_ 7</th><th>_ 7</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.09</th><th><mdl< th=""><th>35</th><th>_ 7</th><th>_ 7</th><th>-</th><th>-</th></mdl<></th></mdl<>	0.09	<mdl< th=""><th>35</th><th>_ 7</th><th>_ 7</th><th>-</th><th>-</th></mdl<>	35	_ 7	_ 7	-	-
PAH	Naphthalene	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>-</th><th>(190) ^v</th><th>(210) ^v</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>-</th><th>(190) ^v</th><th>(210) ^v</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>-</th><th>(190) ^v</th><th>(210) ^v</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th>(190) ^v</th><th>(210) ^v</th><th>-</th><th>-</th></mdl<>	-	(190) ^v	(210) ^v	-	-
	Pyrene	<mdl< th=""><th><mdl< th=""><th>0.15</th><th><mdl< th=""><th>-</th><th>(20,000)</th><th>(20,000)</th><th>-</th><th>-</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>0.15</th><th><mdl< th=""><th>-</th><th>(20,000)</th><th>(20,000)</th><th>-</th><th>-</th></mdl<></th></mdl<>	0.15	<mdl< th=""><th>-</th><th>(20,000)</th><th>(20,000)</th><th>-</th><th>-</th></mdl<>	-	(20,000)	(20,000)	-	-
	ND/D	ND	ND	ND	ND	-	-	-	-	-
Asbestos	ACM	-	_	-	-	-	-	-	0.05	-
	FA/AF	-	_	-	-	-	-	-	0.001	-

		Test Analysis	s Levels (mg/kg)	MfE			
Sampl	le Reference	SWA-SS47	SWA-SS48 (dup of SWA-SS47)		PHG ²	Achastas	Dookswaynd Sail
Samp	le Soil Type		NES 1		Asbestos SGV ³	Background Soil Concentrations 4	
Guideli	ine Soil Type	San	dy SILT	NEO .	Sandy Silt	307	Concentrations
San	nple Date	29 Jւ	ine 2023				
Sampl	le Depth (m)	0		<1m			
	As	14	15	70	-	-	12.67
	Cd	0.67	0.61	1,300	-	-	0.28
	Cr	19	20	6,300	-	-	60.5
Heavy	Cu	46	47	10,000	-	-	40.17
Metals	Pb	290	280	3,300	-	-	30.08
	Hg	0.3	0.29	4,200	-	-	0.45
	Ni	7.9	8.4	3,000 ⁵	-	-	32.88
	Zn	310	300	35,000 ⁵	-	-	101.8
	ΣDDT	<mdl< th=""><th><mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>1,000</th><th>-</th><th>-</th><th>-</th></mdl<>	1,000	-	-	-
ОСР	Aldrin	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th></mdl<>	160	-	-	-
UCP	Dieldrin	<mdl< th=""><th><mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>160</th><th>-</th><th>-</th><th>-</th></mdl<>	160	-	-	-
	Lindane	<mdl< th=""><th><mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>14,180 ⁶</th><th>-</th><th>-</th><th>-</th></mdl<>	14,180 ⁶	-	-	-
	BaP Eq.	<mdl< th=""><th>0.07</th><th>35</th><th>_ 7</th><th>-</th><th>-</th></mdl<>	0.07	35	_ 7	-	-
PAH	Naphthalene	<mdl< th=""><th><mdl< th=""><th>-</th><th>(210) v</th><th>-</th><th>-</th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th>(210) v</th><th>-</th><th>-</th></mdl<>	-	(210) v	-	-
	Pyrene	<mdl< th=""><th>0.04</th><th>-</th><th>(20,000)</th><th>-</th><th>-</th></mdl<>	0.04	-	(20,000)	-	-
	ND/D	ND	ND	-	-	-	-
Asbestos	ACM	-	-	-	-	0.05	-
	FA/AF	-	-	-	-	0.001	

Notes

Concentration: Values below accepted Background Levels (Heavy Metals) and / or laboratory MDL (OCP and PAH)

Concentration: Values above accepted Background Levels and / or laboratory MDL but in compliance with relevant criteria

Concentration: Values above relevant acceptance criteria

ND = Asbestos Not Detected **D** = Asbestos Detected

dup = Duplicate sample (QA / QC purposes)

- ¹ NES MfE NES Human Health Criteria for Commercial / Industrial Use (MfE, 2012)
- ² PHG Soil MfE Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (2011) Tier 1 Soil Acceptance Criteria for Commercial / Industrial Use (All Pathways), 'Sand' and 'Sandy Silt' soil types, <1m. Brackets denote values exceed threshold likely to correspond to formation of residual separate phase hydrocarbons. At 20,000 mg/kg, residual separate phase is expected to have formed in soil matrix. The following notes indicate the limiting pathway for each criterion: v = volatilisation, s = soil ingestion, d = dermal, p = produce, m = maintenance/excavation, x = PAH surrogate
- ³ Asbestos SGV Asbestos Soil Guidelines Values (%w/w) for Asbestos Containing Material (ACM) and Fibrous Asbestos/Asbestos Fines (FA / AF) for Commercial and Industrial sites, New Zealand Guidelines for Assessing and Managing Asbestos in Soil (2017).
- ⁴ Upper 95% Predicted Background Soil Concentrations for Sandstone Soils (http://lris.scinfo.org.nz)
- ⁵ Australian Health Investigation Levels for Commercial / Industrial use (NEPC, 1999), applied in accordance with MfE Contaminated Land Guidelines No. 2
- ⁶ MfE Soil Guidelines for Former Sheep-Dip Sites for Commercial / Industrial Use (MfE, 2006)
- ⁷ Where NES and / or Regional Council acceptance criteria values are available, NES and/or Regional Council values are applied over PHG criteria
- ⁸ Laboratory result picked up Pyrene detection in individual sample and not the original composite sample due to a heterogeneity issue that was not picked up in the composite sample

8.0 Quality Assurance / Quality Control

Three duplicate soil sample sets (SWA-SS21, duplicate of SWA-SS20; SWA-SS31, duplicate of SWA-SS32; and SWA-SS47, duplicate of SWA-SS48) were collected for QA / QC purposes. The duplicate soil samples were collected using the same soil sampling procedures and analysed at the laboratory using the same sample preparation and analysis procedures as the original samples.

Relative Percentage Difference (RPD) calculations for analytes reported above the laboratory MDL ranged from 2.2% to 60%. RPD values for the duplicate pair mostly met S&RC QA/QC acceptance criteria of less than 50%.

Exceptions to S&RC QA/QC acceptance criteria are listed below (from duplicate pairing SWA-SS021 as a duplicate of SWA-SS20) with an RPD value of 60% for Cadmium.

RPD valves above S&RC QA/QC acceptance criteria are inferred to be due to a minor laboratory result difference to an already low analytical result for Cadmium.

QA/QC results are presented in Table 6. Laboratory analytical results are provided in Appendix G.

Table 6 - Quality Assurance / Quality Control Results

		Results	(mg/kg)	RPD	Results	(mg/kg)	DDD			RPD
Contamina	Contaminant of Concern		SWA- SS21	(%)	SWA- SS31	SWA- SS32	RPD (%)	SWA- SS47	SWA- SS48	(%)
	As	13	9.9	27.1	6.4	7.6	17.1	14	15	6.9
	Cd	0.35	0.65	60.0	0.71	0.83	15.6	0.67	0.61	9.4
	Cr	14	13	7.4	12	14	15.4	19	20	5.1
Heavy	Cu	21	18	15.4	45	55	20.0	46	47	2.2
Metals	Pb	15	16	6.5	41	36	13.0	290	280	3.5
	Hg	0.47	0.45	4.3	0.34	0.37	8.5	0.3	0.29	3.4
	Ni	7.9	6.1	25.7	6.9	9.7	33.7	7.9	8.4	6.1
	Zn	140	120	15.4	290	360	21.5	310	300	3.3
	ΣDDT	0.02	<mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	-	<mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<>	-	<mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<>	<mdl< th=""><th>•</th></mdl<>	•
ОСР	Aldrin	<mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	-	<mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<>	-	<mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<>	<mdl< th=""><th>•</th></mdl<>	•
OCF	Dieldrin	<mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	-	<mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<>	-	<mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<>	<mdl< th=""><th>•</th></mdl<>	•
	Lindane	<mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	-	<mdl< th=""><th><mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>-</th><th><mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<></th></mdl<>	-	<mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<>	<mdl< th=""><th>•</th></mdl<>	•
	BaP Eq.	-	-	-	-	-	-	<mdl< th=""><th>0.07</th><th>•</th></mdl<>	0.07	•
PAH	Naphthalene	-	-	-	-	-	-	<mdl< th=""><th><mdl< th=""><th>•</th></mdl<></th></mdl<>	<mdl< th=""><th>•</th></mdl<>	•
	Pyrene	-	-	-	-	-	-	<mdl< th=""><th>0.04</th><th>•</th></mdl<>	0.04	•
	ND/D	ND	ND	-	ND	ND	-	ND	ND	-
Asbestos	ACM	-	-	-	-	-	-	-	-	•
	FA/AF	-	-	-	-	-	-	-	-	•

MDL = Method Detection Limit

mg/kg = milligrams per kilogram

RPD = Relative Percentage Difference

9.0 Groundwater Assessment Criteria

Groundwater analytical results were assessed against:

• ANZG – Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG) (updated

Australian and New Zealand Environmental and Conservation Council [ANZECC] Guidelines) 2018,

Australian and New Zealand Environmental and Conservation Council [ANZECC] Guidelines) 2000 -

Primary Industries (Volume 3), Irrigation and general water uses, and

Water Services (Drinking Water Standards for New Zealand) Regulations 2022.

While part of our report assesses potential planning and Resource Consent requirements from relevant

authorities, these sections are provided for reference only. Guidance / clarification sound be sought from an

Environmental Planning Specialist.

Australian and New Zealand Guidelines for Fresh and Marine Water Quality

The ANZG 2018 Guidelines are an update of the ANZECC 2000 Guidelines and are proposed to replace the

ANZECC Guidelines.

The ANZG provide water managers with tools and guidance to assess, manage and monitor water quality. They

complement the existing National Policy Statement for Freshwater Management (Freshwater NPS), which is the

main direction to local government about how to manage freshwater in New Zealand.

The ANZG provide Default Guideline Values (DGV) considered protective of fresh and marine water

ecosystems. However, the ANZG notes that there are "several errors and inconsistencies" in the published DGV;

therefore, all DGV referenced in this investigation were checked against Table 3.4.1 and Section 8.3.7 of the

ANZECC 2000 Guidelines.

Water Services (Drinking Water Standards for New Zealand)

The Water Services (Drinking Water Standards for New Zealand) Regulations 2022 provide water managers

with tools and guidance to assess, manage and monitor drinking-water quality.

The standards are based in part on the World Health Organization Guidelines for drinking-water quality.

These standards revoke and replace the Drinking-water Standards for New Zealand 2005 (revised 2018).

Detailed Site Investigation

10.0 Groundwater Analytical Results

Four groundwater samples were collected from the monitoring wells where groundwater was available. Five of

the nine groundwater monitoring wells were dry during the groundwater monitoring event, and a QA/QC sample

could not be collected due to the low amount of groundwater available for sampling.

Groundwater samples were analysed for Dissolved Metals, cBOD, Chloride, TKN, Nitrite and Nitrate Nitrogen,

Total Phosphorus and Cation Profile (Sodium, Calcium, Potassium and Magnesium).

Laboratory analytical results reported:

Total Phosphorus concentrations were detected in all groundwater samples above ANZECC criteria for

irrigation and general water use. However, further analysis would be required to separate natural

contributions of phosphorus from that which might be associated with irrigation of wastewater.

Sodium (Na) concentration in one sample (PZ08) was detected above the Drinking Water Standards

criteria.

Heavy Metals concentrations were detected in all groundwater samples, but at concentrations below

applicable ANZG DGV criteria.

Chloride was detected in all groundwater samples, but at concentrations below applicable criteria.

Nitrite Nitrogen and Nitrate Nitrogen were detected in three of the four groundwater samples, but at

concentrations below applicable criteria.

Laboratory analytical results for groundwater samples collected at the site are summarised in Table 7. Monitoring

well locations are shown on S&RC Drawing 230599 / 5 provided in Appendix A. Laboratory analytical results

and COC documentation are provided in Appendix E.

Detailed Site Investigation

Fonterra Hautapu, 185 Swayne Road, Cambridge

Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

Table 7 – Groundwater Analytical Results

			Test Analysis	Levels (mg/L)				Drinking
Sample F	Reference	PZ02	PZ06	PZ08	PZ09	ANZG DGV 1	ANZECC ²	Water
Sampl	Sample Date		2 Augus	st 2023			Standards ³	
	As	0.0056	0.0075	0.0033	< MDL	0.140	1	0.01
	Cd	< MDL	< MDL	< MDL	< MDL	0.0008	1	0.004
Heerne	Cr	0.0017	< MDL	< MDL	< MDL	0.040	-	0.05
Heavy Metals	Cu	0.0009	0.0069	0.0114	0.0113	0.0025	-	2
Wietais	Pb	< MDL	0.00012	0.00028	0.00055	0.0094	-	0.01
	Ni	0.0056	0.0028	0.0016	0.0010	0.017	-	0.08
	Zn	0.0073	0.0149	0.0087	0.0169	0.031	-	1.5
	cBOD	ND	ND	< MDL	ND	-	15	-
	Chloride	44	29	77	1.1	-	1	250
Total Kjelda	hl Nitrogen	23	0.90	11	5.7		•	-
	Nitrite-N	< MDL	0.006	0.059	0.004	-	-	0.913 4
	Nitrate-N	< MDL	0.039	8	0.134	0.065	-	11.3
Total Pho	osphorus	0.63	0.34	7	12.3	0.024	0.05	-
	Na	71	77	300	ND	-	-	200
Cation	Ca	43	11.1	22	ND	-	-	100
Profile	K	22	7.8	44	ND	-	-	-
	Mg	16	9.7	5.1	ND	-	-	100

Notes: Concentration: Values below laboratory Method Detection Limit (MDL)

Concentration: Values above MDL but in compliance with relevant criteria

Concentration: Values above relevant acceptance criteria

ND: No data

¹ ANZG DGV – Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, August 2018) (80% protection of freshwater species [95% protection for Hg]). ANZG notes that there are 'several errors and inconsistencies' in the published DGV database. All values referenced in this investigation have been checked against Table 3.4.1 of the ANZECC 2000 Guidelines. Only chemical guidelines have been shown, not physical stress guidelines.

² ANZECC 2000 Guidelines – Primary Industries (Volume 3), Irrigation and general water uses.

³ Drinking Water Standards for New Zealand Regulations 2022. Maximum acceptable values for inorganic determinands of health significance.

⁴ Drinking Water Standards for New Zealand Regulations 2022. Maximum acceptable values for inorganic determinands of health significance, Nitrite guideline value provided as 3 mg/L, converted to Nitrite-N (multiplied by 3.284 [0.913mg/L]).

11.0 Conceptual Site Model

A Conceptual Site Model (CSM) was developed for the site to provide a preliminary assessment of potential effects on Human Health and the Environment. The CSM is presented in Table 8:

Table 8 – Conceptual Site Model

Source	Exposure Pathway	Potential Receptors	Risk Assessment	
	Human Health Soil Ingestion, Inhalation (Dust), Dermal Contact, Produce	During Construction Subsurface Construction / Maintenance Workers After Construction Subsurface Construction / Maintenance Workers, On-site Users	 CoC concentrations in all soil samples were below MfE NES and PHG Human Health criteria, and Asbestos was not detected in the soil samples, Prior to earthworks, a Site Management Plan (SMP) should be prepared for the site, outlining control measures to be implemented prior to / during redevelopment. 	No risk to human health
Contaminants in Soil	Environmental Discharge Contaminant Migration After Construction Groundwater, Flora After Construction Groundwater, Flora After Construction Groundwater, Flora Fauna isolate substa The ne near th (Mang Ground betwee Prior to for the implen Surplu dispos		 Low levels of metals and PAH are present in isolated soils around buildings and the substation. The nearest surface water body is located onsite near the northern boundary of the site (Mangaone Stream), Groundwater was encountered at depths ranging between 0.1m and 3.2m bgl beneath the site, Prior to earthworks, a SMP should be prepared for the site, outlining control measures to be implemented prior to / during redevelopment, and Surplus soils requiring offsite disposal must be disposed of to a site authorised to take the levels of contamination present. 	Risk Must be Managed
Contaminants in Groundwater	Human Health (Groundwater Use)	Groundwater and Surface Water Users	Groundwater beneath the site is used for irrigation purposes, Total Phosphorus concentrations were detected in all groundwater samples above ANZECC criteria for irrigation and general water use, Groundwater beneath the site is not used for potable use, Sodium (Na) concentrations in one sample (PZ08) were above the Drinking Water Standards criteria, and The nearest surface water body is located onsite near the northern boundary of the site (Mangaone Stream).	No risk to human health so long as not used for potable purposes.
	Environmental Discharge (Contaminant Migration) Environmental Freshwater Ecosystem Flora / Fauna		Dissolved Metals concentrations were below Environmental criteria.	No Risk to the environment should be assessed further if discharge to surface water is required

Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

12.0 Regulatory Implications

This section considers the potential regulatory implications in a future development scenario, following a successful plan change application. Soil disturbance is presumed to be required, with a change of land use (to commercial/ industrial) and potential subdivision. Based on findings of our investigation, Table 9 presents potential Resource Consent requirements for the proposed redevelopment under the provisions of the NES.

This investigation presents factual information for the site. Matters of control and discretion, however, rest with the consenting authority (Waipa District Council / Waikato Regional Council) based on their assessment of this report. It would be appropriate to seek clarification of Waipa District Council / Waikato Regional Council or an Environmental Planning Specialist for further information on resource consenting requirements.

The NES does not apply to large areas of the site, as contaminants are below background levels and/or no HAIL activity has been confirmed. The exception is the substation, which is a confirmed HAIL activity with associated contaminants above background levels. Low level contamination around the dwelling and sheds, does not meet the test for HAIL Activity I ("... contaminants present in sufficient quantity to present a risk to human health or the environment") so the NES does not apply to these buildings. Similarly, the NES does not apply to the water treatment plant, or in relation to irrigation of wastewater or spray drift as contaminants are below background levels (NES Regulation 5(9)).

Table 9 sets out the consenting requirements for any soil disturbance involving land beneath or within the immediate vicinity of the substation.

A site management plan (SMP) would be required to support consent application for soil disturbance involving the substation. However, it would be prudent for this to also cover wider site requirements such as soil disposal options for topsoil around buildings, to ensure that future contractors have a single document that is easy to follow and implement.

Table 9 – Current Regulations and Potential Resource Consent Requirements for the Substation

	Potential Applicable Planning Rules
National Environmental Standard (NES)	 CONTROLLED ACTIVITY, subject to requirements under Rule 9 A DSI (this investigation) has been prepared for the site; Concentrations of target contaminants complied with NES Human Health criteria;
	 Controlled Activity status assumes a SMP will be prepared for the site and the site will be managed; and Conditions of Rule 9 must be complied with.

We note that the Waikato Regional Plan also contains rules regarding the management of contaminated soils.

These are typically only triggered when "remediation" is required. As no remediation is required on this site,

we consider the contamination rules in the Waikato Regional Plan do not apply to this site.

13.0 Conclusion

This DSI was carried out for the site in accordance with the scope of work and current applicable regulations.

This report has been prepared in accordance with MfE's Guidelines for Contaminated Site Investigations and

Waipa District Council / Waikato Regional Council requirements. The investigation and reporting have been

prepared, reviewed, and authorised by SQEP, as required under the NES.

Forty-seven soil samples (41 shallow soil samples [16 shallow soil samples analysed as five composite samples

and 25 shallow samples collected for individual and QA/QC purposes] and six individual deeper soil samples)

were collected. Thirty-six samples were analysed for CoC, including Heavy Metals, OCP, PAH and / or Asbestos.

Following receipt of laboratory results a further six soil samples were analysed for Heavy Metals and PAH due

to Composite # 2, 3 and 4 exceeding applicable Background Levels.

Four groundwater samples were collected from the existing monitoring wells and analysed for Dissolved Metals,

cBOD, Chloride, TKN, Nitrite and Nitrate Nitrogen, Total Phosphorus and Cation Profile (Sodium, Calcium,

Potassium and Magnesium). Laboratory analytical results reported:

Soil:

All CoC concentrations complied with MfE NES and / or PHG Human Health criteria,

Asbestos was not detected in any of the soil samples, and

Heavy Metal concentrations are generally at Background Levels, although there are minor exceedances

in isolated soils around structures.

Groundwater:

Total Phosphorus concentrations were detected in all groundwater samples above ANZECC criteria for

irrigation and general water use,

Sodium concentration in one sample (PZ08) was detected above the Drinking Water Standards criteria,

Heavy Metals concentrations were detected in all groundwater samples, but at concentrations below

applicable ANZG DGV criteria,

Chloride was detected in all groundwater samples, but at concentrations below applicable criteria, and

Nitrite and Nitrate Nitrogen were detected in three of the four groundwater samples, but at concentrations

below applicable criteria.

Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

14.0 Recommendations

Findings from this report and S&RC's 2023 PSI (Ref. 221000, Environmental Site Assessment – Preliminary

Site Investigation for Proposed Plan Change and Future Development at 185 Swayne Road, Cambridge, S&RC,

17 July 2023) are suitable to support the proposed Plan Change.

Prior to earthworks or future redevelopment:

Prior to earthworks commencing, a SMP should be prepared to set out contamination-related control

measures for the earthworks, and provide contingency procedures should unexpected contamination

be identified,

All soils can be reused on site from a contamination perspective. Surplus soils are largely suitable for

cleanfill disposal, but there are isolated areas around the dwelling, sheds and substation where surplus

topsoil would require disposal to a managed fill site. Findings from this report should be presented to

the receiving facility for reference,

Shallow groundwater beneath the site is not intended for potable use and the anticipated future

redevelopment of the site comprises commercial / industrial use. However, in the event that groundwater

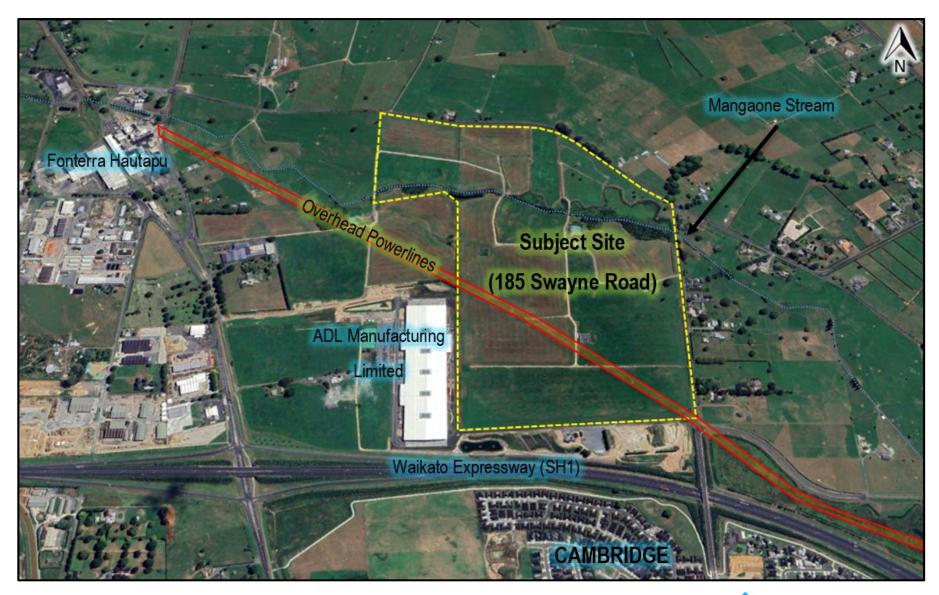
is encountered or accumulates during earthworks the potential risk presented by it phosphorus content

will need to be evaluated further before discharge to surface water can be undertaken,

Depending on the nature of the eventual redevelopment of the site, further sampling may be required to

delineate soils for managed fill disposal. This should be addressed at resource consent stage.

End of Report Text – Appendices Follow

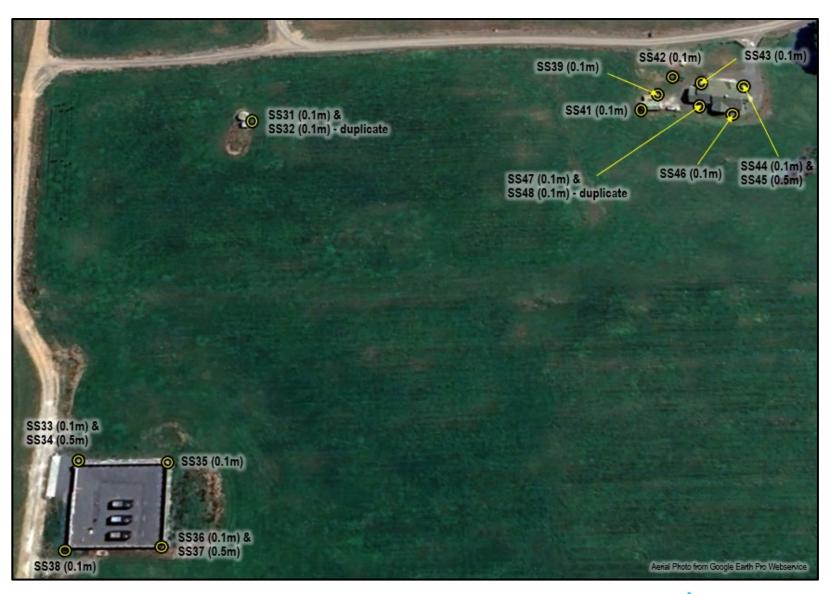

Detailed Site Investigation

Appendix A

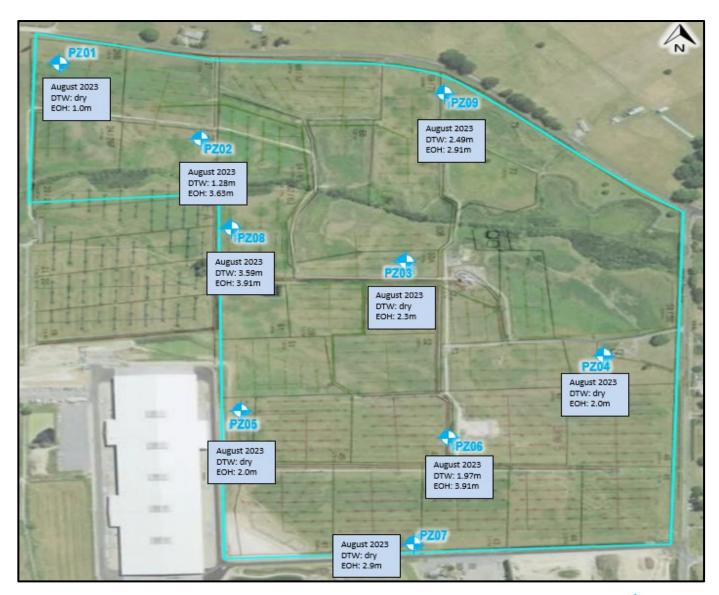
Site Plan

Ref No. 230599 September 2023

Job No. 230599 / 1 – 185 Swayne Road, Cambridge



Job No. 230599 / 2 – 185 Swayne Road, Cambridge



Job No. 230599 / 3 – 185 Swayne Road, Cambridge

Job No. 230599 / 4 – 185 Swayne Road, Cambridge

Job No. 230599 / 5 – 185 Swayne Road, Cambridge

Appendix B

Photographic Documentation

Ref No. 230599 September 2023

Photo 1: View from eastern boundary (Swayne Road) looking west across the southern part of the site towards the ADL Manufacturing Limited facility in the distance. The site is utilised as pastureland, powerlines are visible on the right side of the photograph running northwest to southeast across the centre of the site. Surface water ponding is visible to the right side of the photograph beneath the powerlines.

<u>Photo 2</u>: View from the dwelling on the eastern boundary of the site looking towards the north, the Mangaone Stream is located amongst the vegetated area in the centre of the photograph, flowing west to east just inside the site's northern boundary.

<u>Photo 3</u>: View from the dwelling on the eastern boundary of the site looking towards the northwest, the water treatment plant is visible by the two silos in the centre of the photograph, the Fonterra Hautapu site is beyond to the northwest.

<u>Photo 4</u>: View from the water treatment plant looking east towards the dwelling and Swayne Road.

<u>Photo 5</u>: View from near the southern boundary of the site looking north towards the substation and the powerlines that run northwest to southeast across the centre of the site.

<u>Photo 6</u>: View of dwelling located on the eastern boundary of the site (Swayne Road). The sign (obscured) to the left of the photograph is the entry information to the Bardowie Farm irrigation site.

<u>Photo 7</u>: View of the associated structure (garage) to the dwelling above in Photo 6, located immediately west of the dwelling.

<u>Photo 8</u>: View of a section of the Mangaone Stream, the flow appears to be light and / or possibly impeded by vegetation growth in the watercourse. The banks of the stream are healthy with native plants abundant along the riparian margin.

Appendix C

Laboratory Analytical Results and Chain of Custody Documentation

Ref No. 230599 September 2023

Soil & Rock Consultants
Level 1, 131 Lincoln Rd Henderson
Auckland
NEW ZEALAND

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Page 1 of 27

Report Number: 1004441-S

Attention: Aaron Thorburn

Report 1004441-S

Project name

Project ID 230599
Received Date Jul 03, 2023

Client Sample ID			SS01	SS02	SS03	SS04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0002905	K23-JI0002906	K23-JI0002907	K23-JI0002908
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides (NZ MfE)	•	•				
2.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
DDT + DDE + DDD (Total)*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
a-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
b-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chlordanes - Total	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
cis-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
d-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dieldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan I	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan II	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan sulphate	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin aldehyde	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin ketone	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
g-HCH (Lindane)	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor epoxide	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Methoxychlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1	%	93	80	100	84
Tetrachloro-m-xylene (surr.)	1	%	124	123	140	124
Metals M8 (NZ MfE)						
Arsenic	0.1	mg/kg	11	9.7	8.1	12
Cadmium	0.01	mg/kg	0.18	0.23	0.29	0.51
Chromium	0.1	mg/kg	14	10	8.5	11
Copper	0.1	mg/kg	11	11	7.5	8.1
Lead	0.1	mg/kg	13	12	17	23

Client Sample ID			SS01	SS02	SS03	SS04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0002905	K23-JI0002906	K23-JI0002907	K23-JI0002908
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit				
Metals M8 (NZ MfE)						
Mercury	0.01	mg/kg	0.48	0.12	0.13	0.16
Nickel	0.1	mg/kg	6.3	4.3	3.7	4.5
Zinc	5	mg/kg	84	64	48	56
Sample Properties						
% Moisture	1	%	31	31	28	29

Client Sample ID			SS05	SS06	SS07	SS08
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0002909	K23-JI0002910	K23-JI0002911	K23-JI0002912
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides (NZ MfE)	•					
2.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
DDT + DDE + DDD (Total)*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
а-НСН	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
b-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chlordanes - Total	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
cis-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
d-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dieldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan I	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan II	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan sulphate	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin aldehyde	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin ketone	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
g-HCH (Lindane)	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor epoxide	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Methoxychlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1	%	80	75	87	89
Tetrachloro-m-xylene (surr.)	1	%	122	120	124	122
Metals M8 (NZ MfE)						
Arsenic	0.1	mg/kg	11	3.7	6.4	9.5
Cadmium	0.01	mg/kg	0.37	0.24	0.29	0.39
Chromium	0.1	mg/kg	14	13	11	12
Copper	0.1	mg/kg	23	8.2	10	15
Lead	0.1	mg/kg	20	9.8	18	14
Mercury	0.01	mg/kg	0.48	0.13	0.30	0.11

Date Reported: Jul 12, 2023 Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

Report Number: 1004441-S

Client Sample ID Sample Matrix Eurofins Sample No.			SS05 Soil K23-JI0002909	SS06 Soil K23-JI0002910	SS07 Soil K23-JI0002911	SS08 Soil K23-JI0002912
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit			,	
Metals M8 (NZ MfE)	•					
Nickel	0.1	mg/kg	4.1	5.7	5.3	4.9
Zinc	5	mg/kg	82	78	68	78
Sample Properties						
% Moisture	1	%	37	52	31	33

Client Sample ID			SS09	SS10	SS11	SS12
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0002913	K23-JI0002914	K23-JI0002915	K23-JI0002916
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit	04.1.20, 2020	0411 20, 2020	0411 20, 2020	04.1. 20, 2020
Organochlorine Pesticides (NZ MfE)	LOR	Offic				
2.4'-DDD	0.01	ma/ka	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDD	0.01	mg/kg			< 0.01	< 0.01
4.4'-DDE	0.01	mg/kg	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01
		mg/kg				
4.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
DDT + DDE + DDD (Total)*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
a-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
b-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chlordanes - Total	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
cis-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
d-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dieldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan I	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan II	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan sulphate	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin aldehyde	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin ketone	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
g-HCH (Lindane)	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor epoxide	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Methoxychlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1	%	94	93	125	75
Tetrachloro-m-xylene (surr.)	1	%	119	120	INT	87
Metals M8 (NZ MfE)						
Arsenic	0.1	mg/kg	9.0	4.4	6.0	6.9
Cadmium	0.01	mg/kg	0.39	0.22	0.24	0.52
Chromium	0.1	mg/kg	12	10	13	14
Copper	0.1	mg/kg	14	14	24	29
Lead	0.1	mg/kg	13	16	16	16
Mercury	0.01	mg/kg	0.13	0.53	0.70	0.43
Nickel	0.1	mg/kg	5.1	4.4	7.3	9.0
Zinc	5	mg/kg	79	78	130	150

Date Reported: Jul 12, 2023 Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

Report Number: 1004441-S

Client Sample ID			SS09	SS10	SS11	SS12
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0002913	K23-JI0002914	K23-JI0002915	K23-JI0002916
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit				
Sample Properties						
% Moisture	1	%	32	39	54	51

Client Sample ID			SS13	SS14	SS15	SS16
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0002917	K23-JI0002918	K23-JI0002919	K23-JI0002920
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit	, , , , , , , , , , , , ,	, , , , , , , , , , , , ,	, , , , , , , , , ,	, , , , , , , ,
Organochlorine Pesticides (NZ MfE)	LOIK	Offic				
2.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	0.02
4.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
DDT + DDE + DDD (Total)*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	0.02
a-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
b-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chlordanes - Total	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
cis-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
d-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dieldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan I	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan II	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan sulphate	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin aldehyde	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin ketone	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
g-HCH (Lindane)	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor epoxide	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Methoxychlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1	%	83	71	83	75
Tetrachloro-m-xylene (surr.)	1	%	89	83	86	80
Metals M8 (NZ MfE)						
Arsenic	0.1	mg/kg	4.9	6.7	9.2	5.1
Cadmium	0.01	mg/kg	0.21	0.12	0.34	0.19
Chromium	0.1	mg/kg	15	7.3	15	15
Copper	0.1	mg/kg	26	9.4	30	21
Lead	0.1	mg/kg	13	12	15	14
Mercury	0.01	mg/kg	0.86	0.29	0.72	0.83
Nickel	0.1	mg/kg	5.7	2.6	7.7	5.4
Zinc	5	mg/kg	130	52	150	120
Sample Properties		1				
% Moisture	1	%	57	37	59	50

Page 4 of 27

Report Number: 1004441-S

Client Sample ID			SS17	SS18	SS19	SS20
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0002921	K23-JI0002922	K23-JI0002923	K23-JI0002924
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit	,	,	, ,	,
Organochlorine Pesticides (NZ MfE)						
2.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	0.02
4.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
DDT + DDE + DDD (Total)*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	0.02
а-НСН	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
b-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chlordanes - Total	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
cis-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
d-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dieldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan I	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan II	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan sulphate	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin aldehyde Endrin ketone	0.01	mg/kg mg/kg	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01
g-HCH (Lindane)	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor epoxide	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Methoxychlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1	%	81	80	80	71
Tetrachloro-m-xylene (surr.)	1	%	86	83	83	79
Metals M8 (NZ MfE)		•				
Arsenic	0.1	mg/kg	8.4	5.3	5.3	13
Cadmium	0.01	mg/kg	0.38	0.25	0.23	0.35
Chromium	0.1	mg/kg	16	14	17	14
Copper	0.1	mg/kg	30	27	23	21
Lead	0.1	mg/kg	20	14	15	15
Mercury	0.01	mg/kg	0.90	0.81	0.75	0.47
Nickel	0.1	mg/kg	8.0	7.2	6.4	7.9
Zinc	5	mg/kg	150	130	140	140
Sample Properties		1				
% Moisture	1	%	49	55	57	34

Date Reported: Jul 12, 2023 Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

Report Number: 1004441-S

Client Sample ID Sample Matrix			SS21 Soil	COMPOSITE #1 (SS22 SS24 AND SS25) Soil	COMPOSITE #2 (SS26 SS27 SS29 AND SS30) Soil	SS23 Soil
•						
Eurofins Sample No.			K23-JI0002925	K23-JI0002926	K23-JI0002927	K23-JI0002928
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides (NZ MfE)						
2.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
DDT + DDE + DDD (Total)*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
a-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
b-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chlordanes - Total	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
cis-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
d-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dieldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan I	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan II	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan sulphate	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin aldehyde	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin ketone	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
g-HCH (Lindane)	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor	0.01	mg/kg	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01 < 0.01
Heptachlor epoxide Hexachlorobenzene	0.01	mg/kg	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01
Methoxychlor	0.01	mg/kg mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Toxaphene	0.01	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1	%	81	80	72	INT
Tetrachloro-m-xylene (surr.)	1	%	76	78	77	76
Metals M8 (NZ MfE)		70	7.0	7.0		70
Arsenic	0.1	mg/kg	9.9	12	8.6	6.0
Cadmium	0.01	mg/kg	0.65	0.11	0.26	0.03
Chromium	0.01	mg/kg	13	8.5	16	8.4
Copper	0.1	mg/kg	18	14	15	5.1
Lead	0.1	mg/kg	16	8.7	11	12
Mercury	0.01	mg/kg	0.45	0.05	0.11	0.08
Nickel	0.1	mg/kg	6.1	3.0	6.7	3.3
Zinc	5	mg/kg	120	57	100	32
Sample Properties			-			
% Moisture	1	%	44	27	23	29
Polycyclic Aromatic Hydrocarbons (NZ MfE)	<u> </u>					
Acenaphthene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Acenaphthylene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Anthracene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Benz(a)anthracene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene TEQ (lower bound)*	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03

Page 6 of 27

Report Number: 1004441-S

Client Sample ID Sample Matrix Eurofins Sample No.			SS21 Soil K23-J10002925	COMPOSITE #1 (SS22 SS24 AND SS25) Soil K23-J10002926	COMPOSITE #2 (SS26 SS27 SS29 AND SS30) Soil K23-J10002927	SS23 Soil K23-J10002928
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons (NZ MfE)						
Benzo(a)pyrene TEQ (medium bound)*	0.03	mg/kg	-	0.04	0.04	0.04
Benzo(a)pyrene TEQ (upper bound)*	0.03	mg/kg	-	0.08	0.08	0.08
Benzo(b&j)fluoranthene ^{N07}	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Benzo(g.h.i)perylene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Chrysene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Dibenz(a.h)anthracene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Fluoranthene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Fluorene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Indeno(1.2.3-cd)pyrene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Naphthalene	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
Phenanthrene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Pyrene	0.03	mg/kg	-	< 0.03	< 0.03	< 0.03
Total PAH*	0.1	mg/kg	-	< 0.1	< 0.1	< 0.1
p-Terphenyl-d14 (surr.)	1	%	-	90	80	67
2-Fluorobiphenyl (surr.)	1	%	-	70	74	72

Client Sample ID Sample Matrix			SS28 Soil	SS31 Soil	SS32 Soil	COMPOSITE #3 (SS33 SS35 SS36 AND SS38) Soil
Eurofins Sample No.			K23-JI0002929	K23-JI0002930	K23-JI0002931	K23-JI0002932
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides (NZ MfE)						
2.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
DDT + DDE + DDD (Total)*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
а-НСН	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
b-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chlordanes - Total	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
cis-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
d-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dieldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan I	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan II	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan sulphate	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin aldehyde	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin ketone	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
g-HCH (Lindane)	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01

Page 7 of 27

Report Number: 1004441-S

Client Sample ID Sample Matrix Eurofins Sample No.			SS28 Soil K23-JI0002929	\$\$31 \$oil K23-J10002930	\$\$32 \$oil K23-JI0002931	COMPOSITE #3 (\$S33 \$S35 \$S36 AND \$S38) Soil K23-JI0002932
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit	0411 20, 2020	0411 20, 2020	0411 20, 2020	04.1. 20, 2020
Organochlorine Pesticides (NZ MfE)	LOR	Offic				
Heptachlor	0.01		< 0.01	< 0.01	- 0.01	< 0.01
-	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor epoxide Hexachlorobenzene	0.01	mg/kg	< 0.01		< 0.01	< 0.01
	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Methoxychlor	0.01	mg/kg		< 0.01	< 0.01	
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1 1	%	INT 71	58	66	69
Tetrachloro-m-xylene (surr.)	1	%	71	74	73	70
Metals M8 (NZ MfE)		T ,	0.5	0.4	7.0	4.4
Arsenic	0.1	mg/kg	6.5	6.4	7.6	11
Cadmium	0.01	mg/kg	0.07	0.71	0.83	0.36
Chromium	0.1	mg/kg	9.8	12	14	8.3
Copper	0.1	mg/kg	10	45	55	11
Lead	0.1	mg/kg	8.9	41	36	14
Mercury	0.01	mg/kg	0.08	0.34	0.37	0.21
Nickel	0.1	mg/kg	5.9	6.9	9.7	3.4
Zinc	5	mg/kg	43	290	360	67
Sample Properties			0.5	10	10	
% Moisture	1	%	25	43	43	39
Polycyclic Aromatic Hydrocarbons (NZ MfE)		T				
Acenaphthene	0.03	mg/kg	< 0.03	-	-	< 0.03
Acenaphthylene	0.03	mg/kg	< 0.03	-	-	< 0.03
Anthracene	0.03	mg/kg	< 0.03	-	-	< 0.03
Benz(a)anthracene	0.03	mg/kg	< 0.03	-	-	< 0.03
Benzo(a)pyrene	0.03	mg/kg	< 0.03	-	-	< 0.03
Benzo(a)pyrene TEQ (lower bound)*	0.03	mg/kg	< 0.03	-	-	< 0.03
Benzo(a)pyrene TEQ (medium bound)*	0.03	mg/kg	0.04	-	-	0.04
Benzo(a)pyrene TEQ (upper bound)*	0.03	mg/kg	0.08	-	-	0.08
Benzo(b&j)fluoranthene ^{N07}	0.03	mg/kg	< 0.03	-	-	< 0.03
Benzo(g.h.i)perylene	0.03	mg/kg	< 0.03	-	-	< 0.03
Benzo(k)fluoranthene	0.03	mg/kg	< 0.03	-	-	< 0.03
Chrysene	0.03	mg/kg	< 0.03	-	-	< 0.03
Dibenz(a.h)anthracene	0.03	mg/kg	< 0.03	-	-	< 0.03
Fluoranthene	0.03	mg/kg	< 0.03	-	-	< 0.03
Fluorene	0.03	mg/kg	< 0.03	-	-	< 0.03
Indeno(1.2.3-cd)pyrene	0.03	mg/kg	< 0.03	-	-	< 0.03
Naphthalene	0.1	mg/kg	< 0.1	-	-	< 0.1
Phenanthrene	0.03	mg/kg	< 0.03	-	-	< 0.03
Pyrene Tatal BALL*	0.03	mg/kg	< 0.03	-	-	< 0.03
Total PAH*	0.1	mg/kg	< 0.1	-	-	< 0.1
p-Terphenyl-d14 (surr.)	1	%	59	-	-	84
2-Fluorobiphenyl (surr.)	1	%	68	-	-	69

Date Reported: Jul 12, 2023 Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

Report Number: 1004441-S

Client Sample ID			COMPOSITE #4 (SS39 AND SS42)	COMPOSITE #5 (SS43 SS44 AND SS46)	SS34	SS37
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0002933	K23-JI0002934	K23-JI0002935	K23-JI0002936
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit		00 20, 2020	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 20, 2020
Organochlorine Pesticides (NZ MfE)	LOR	Offic				
	0.01	ma/ka	< 0.01	- 0.01	- 0.01	< 0.01
2.4'-DDD 2.4'-DDE	0.01	mg/kg	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01
		mg/kg				
2.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
DDT + DDE + DDD (Total)*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
a-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
b-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chlordanes - Total	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
cis-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
d-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dieldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan I	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan II	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan sulphate	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin aldehyde	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin ketone	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
g-HCH (Lindane)	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor epoxide	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Methoxychlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1	%	74	97	61	INT
Tetrachloro-m-xylene (surr.)	1	%	75	75	79	74
Metals M8 (NZ MfE)						
Arsenic	0.1	mg/kg	18	17	18	21
Cadmium	0.01	mg/kg	0.78	0.69	0.04	0.10
Chromium	0.1	mg/kg	22	19	12	10
Copper	0.1	mg/kg	40	37	8.4	6.2
Lead	0.1	mg/kg	360	120	14	23
Mercury	0.01	mg/kg	0.27	0.17	0.21	0.27
Nickel	0.1	mg/kg	8.9	11	3.5	4.7
Zinc	5	mg/kg	410	190	41	63
Sample Properties	1 -		1.0	100		20
% Moisture	1	%	34	40	29	26
Polycyclic Aromatic Hydrocarbons (NZ MfE)	'	, ,0	"	10	20	
Acenaphthene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
•						
Acenaphthylene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benz(a)anthracene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene	0.03	mg/kg	0.03	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene TEQ (lower bound)*	0.03	mg/kg	0.03	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene TEQ (medium bound)*	0.03	mg/kg	0.05	0.04	0.04	0.04

Page 9 of 27

Report Number: 1004441-S

Client Sample ID Sample Matrix			COMPOSITE #4 (SS39 AND SS42) Soil	COMPOSITE #5 (SS43 SS44 AND SS46) Soil	SS34 Soil	SS37 Soil
Eurofins Sample No.			K23-JI0002933	K23-JI0002934	K23-JI0002935	K23-JI0002936
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons (NZ MfE)						
Benzo(a)pyrene TEQ (upper bound)*	0.03	mg/kg	0.08	0.08	0.08	0.08
Benzo(b&j)fluoranthene ^{N07}	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(g.h.i)perylene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Chrysene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Dibenz(a.h)anthracene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Fluorene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1.2.3-cd)pyrene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Naphthalene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Pyrene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Total PAH*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
p-Terphenyl-d14 (surr.)	1	%	83	91	75	63
2-Fluorobiphenyl (surr.)	1	%	69	71	76	65

Client Sample ID			SS41	SS45	SS47	SS48
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0002937	K23-JI0002938	K23-JI0002939	K23-JI0002940
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides (NZ MfE)	·					
2.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDD	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDE	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4.4'-DDT	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
DDT + DDE + DDD (Total)*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
a-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aldrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
b-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chlordanes - Total	0.01	mg/kg	0.03	< 0.01	< 0.01	< 0.01
cis-Chlordane	0.01	mg/kg	0.03	< 0.01	< 0.01	< 0.01
d-HCH	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dieldrin	0.01	mg/kg	0.03	< 0.01	< 0.01	< 0.01
Endosulfan I	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan II	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan sulphate	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin aldehyde	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Endrin ketone	0.01	mg/kg	0.02	< 0.01	< 0.01	< 0.01
g-HCH (Lindane)	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor epoxide	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Methoxychlor	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01

Page 10 of 27 Report Number: 1004441-S

Client Sample ID			SS41	SS45	SS47	SS48
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0002937	K23-JI0002938	K23-JI0002939	K23-JI0002940
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit		, ,	,	,
Organochlorine Pesticides (NZ MfE)	LOIK	Offic				
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
trans-Chlordane	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1	%	131	68	81	77
Tetrachloro-m-xylene (surr.)	1	%	133	94	107	100
Metals M8 (NZ MfE)	<u>'</u>	/0	100	0-1	107	100
Arsenic	0.1	mg/kg	11	9.6	14	15
Cadmium	0.01	mg/kg	0.59	0.07	0.67	0.61
Chromium	0.01	mg/kg	17	14	19	20
Copper	0.1	mg/kg	26	14	46	47
Lead	0.1	mg/kg	97	34	290	280
Mercury	0.01	mg/kg	0.17	0.15	0.30	0.29
Nickel	0.01	mg/kg	6.0	7.0	7.9	8.4
Zinc	5	mg/kg	200	69	310	300
Sample Properties		ilig/kg	200	03	310	300
% Moisture	1	%	32	33	44	43
Polycyclic Aromatic Hydrocarbons (NZ MfE)	•	•				
Acenaphthene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	0.03	mg/kg	0.09	< 0.03	< 0.03	0.04
Benz(a)anthracene	0.03	mg/kg	0.12	< 0.03	0.04	0.04
Benzo(a)pyrene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.04
Benzo(a)pyrene TEQ (lower bound)*	0.03	mg/kg	0.06	< 0.03	< 0.03	0.05
Benzo(a)pyrene TEQ (medium bound)*	0.03	mg/kg	0.09	0.04	0.04	0.07
Benzo(a)pyrene TEQ (upper bound)*	0.03	mg/kg	0.12	0.08	0.08	0.09
Benzo(b&j)fluoranthene ^{N07}	0.03	mg/kg	0.09	< 0.03	< 0.03	< 0.03
Benzo(g.h.i)perylene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	0.03	mg/kg	0.12	< 0.03	< 0.03	0.04
Chrysene	0.03	mg/kg	0.10	< 0.03	0.04	0.04
Dibenz(a.h)anthracene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	0.03	mg/kg	0.13	< 0.03	< 0.03	0.04
Fluorene	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1.2.3-cd)pyrene	0.03	mg/kg	0.21	< 0.03	0.04	< 0.03
Naphthalene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	0.03	mg/kg	0.07	< 0.03	< 0.03	< 0.03
Pyrene	0.03	mg/kg	0.15	< 0.03	< 0.03	0.04
Total PAH*	0.1	mg/kg	1.1	< 0.1	0.1	0.3
p-Terphenyl-d14 (surr.)	1	%	123	88	94	87
2-Fluorobiphenyl (surr.)	1	%	130	66	64	65

Page 11 of 27

Report Number: 1004441-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Organochlorine Pesticides (NZ MfE)	Auckland	Jul 04, 2023	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water by GCMSMS			
Polycyclic Aromatic Hydrocarbons (NZ MfE)	Auckland	Jul 04, 2023	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water by GC MSMS			
Metals M8 (NZ MfE)	Auckland	Jul 06, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Auckland	Jul 04, 2023	14 Days

- Method: LTM-GEN-7080 Moisture Content in Soil by Gravimetry

Eurofins Environmental Testing NZ Limited NZBN : 9429046024954 35 O'Rorke Road, Penrose, Auckland, New Zealand 1061 Tel: +64 9 526 4551 Page 12 of 27

Report Number: 1004441-S

Eurofins Environment Testing NZ Ltd Eurofins Environment Testing Australia Pty Ltd

VIC 3175

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston. Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

ABN: 50 005 085 521 Melbourne

NATA# 1261 Site# 1254

Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Order No.:

Report #:

Phone:

Fax:

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Eurofins ARL Pty Ltd

Company Name:

Soil & Rock Consultants

Address: Level 1, 131 Lincoln Rd Henderson

Auckland

NEW ZEALAND

1004441 0011 64 9 835 1740

0011 64 9 835 1847

230599

Received: Jul 3, 2023 10:30 AM Due: Jul 10, 2023

Priority: 5 Day

Contact Name: Aaron Thorburn

Project Name:

Project ID: 230599

		Sa	mple Detail			Asbestos - AS4964	Asbestos - AS4964	HOLD	Moisture Set	Organochlorine Pesticides (NZ MfE)	Metals M8 (NZ MfE)	Polycyclic Aromatic Hydrocarbons (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)
	kland Laborator	•					Х	Х	Х	Х	Х	Х	X
	stchurch Labor		290			Х							X
	rnal Laboratory	1			T								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SS01	Jun 29, 2023		Soil	K23-JI0002905				Х	Х	Х		
2	SS02	Jun 29, 2023		Soil	K23-JI0002906				Х	Х	Х		
3	SS03	Jun 29, 2023		Soil	K23-JI0002907				Х	Х	Х		
4	SS04	Jun 29, 2023		Soil	K23-JI0002908				Х	Х	Х		
5	SS05	Jun 29, 2023		Soil	K23-JI0002909				Х	Х	Х		
6	SS06	Jun 29, 2023		Soil	K23-JI0002910				Х	Х	Х		Ш
7	SS07	Jun 29, 2023		Soil	K23-Jl0002911				Х	Х	Х		
8	SS08	Jun 29, 2023		Soil	K23-JI0002912				Х	Х	Х		Ш
9	SS09	Jun 29, 2023		Soil	K23-JI0002913				Х	Х	Х		\perp
10	SS10	Jun 29, 2023		Soil	K23-JI0002914				Х	Х	Х		
11	SS11	Jun 29, 2023		Soil	K23-Jl0002915				Х	Х	Х		
12	SS12	Jun 29, 2023		Soil	K23-Jl0002916				Х	Х	Х		

Eurofins Environment Testing NZ Ltd Eurofins Environment Testing Australia Pty Ltd

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston. Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000

NATA# 1261 Site# 1254

Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Brisbane Newcastle 1/21 Smallwood Place 1/2 Frost Drive Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261

Received:

Perth 46-48 Banksia Road Mayfield West NSW 2304 Welshpool Tel: +61 2 4968 8448 WA 6106 Tel: +61 8 6253 4444 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289 NATA# 2377 Site# 2370

Jul 3, 2023 10:30 AM

Eurofins ARL Pty Ltd

ABN: 91 05 0159 898

Company Name:

Soil & Rock Consultants

Level 1, 131 Lincoln Rd Henderson

Auckland

NEW ZEALAND

Order No.: 230599 Report #: 1004441

Phone: 0011 64 9 835 1740 Fax: 0011 64 9 835 1847

Due: Jul 10, 2023 Priority: 5 Day **Contact Name:** Aaron Thorburn

Project Name: Project ID:

Address:

230599

		Sa	ımple Detail			Asbestos - AS4964	Asbestos - AS4964	HOLD	Moisture Set	Organochlorine Pesticides (NZ MfE)	Metals M8 (NZ MfE)	Polycyclic Aromatic Hydrocarbons (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)
Auc	kland Laborator	y - IANZ# 1327					Х	Х	Х	Х	Х	Х	Х
Chri	stchurch Labor	atory - IANZ# 1	290			Х							Х
Exte	rnal Laboratory	,											
13	SS13	Jun 29, 2023		Soil	K23-JI0002917				Х	Х	Х		
14	SS14	Jun 29, 2023		Soil	K23-JI0002918				Х	Х	Х		
15	SS15	Jun 29, 2023		Soil	K23-JI0002919				Х	Х	Х		
16	SS16	Jun 29, 2023		Soil	K23-JI0002920				Х	Х	Х		
17	SS17	Jun 29, 2023		Soil	K23-JI0002921				Х	Х	Х		
18	SS18	Jun 29, 2023		Soil	K23-JI0002922				Х	Х	Х		
19	SS19	Jun 29, 2023		Soil	K23-JI0002923				Х	Х	Х		
20	SS20	Jun 29, 2023		Soil	K23-JI0002924				Х	Х	Х		
21	SS21	Jun 29, 2023		Soil	K23-JI0002925				Х	Х	Х		
22	COMPOSITE #1 (SS22 SS24 AND SS25)	Jun 29, 2023		Soil	K23-JI0002926				х	x	х	х	
23	COMPOSITE #2 (SS26	Jun 29, 2023		Soil	K23-Jl0002927				Х	х	х	Х	

Eurofins Environment Testing NZ Ltd Eurofins Environment Testing Australia Pty Ltd

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston. Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

ABN: 50 005 085 521

NATA# 1261 Site# 1254

Melbourne Geelong 6 Monterey Road Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000

Phone:

Fax:

Sydney 19/8 Lewalan Street 179 Magowar Road Girraween NSW 2145 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400

0011 64 9 835 1740

0011 64 9 835 1847

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Eurofins ARL Pty Ltd

Company Name:

Address:

Project ID:

Soil & Rock Consultants

Level 1, 131 Lincoln Rd Henderson

Auckland

NEW ZEALAND

Project Name:

230599

Order No.: 230599 Received: Jul 3, 2023 10:30 AM Report #: 1004441

Due: Jul 10, 2023 Priority: 5 Day

Contact Name: Aaron Thorburn

		Sa	ımple Detail				Asbestos - AS4964	Asbestos - AS4964	HOLD	Moisture Set	Organochlorine Pesticides (NZ MfE)	Metals M8 (NZ MfE)	Polycyclic Aromatic Hydrocarbons (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)
Auc	kland Laborator	y - IANZ# 1327						Х	Х	Х	Х	Х	Х	Х
Chri	stchurch Labor	atory - IANZ# 1	290				Х							Х
Exte	rnal Laboratory	1												
	SS27 SS29 AND SS30)													
24	SS23	Jun 29, 2023		Soil	K2	3-JI0002928				Х	Х		Х	Х
25	SS28	Jun 29, 2023		Soil	K2	3-JI0002929				Х	Х		Х	X
26	SS31	Jun 29, 2023		Soil	K2	3-JI0002930				Х	Х	Х		
27	SS32	Jun 29, 2023		Soil	K2	3-JI0002931				Х	Х	Х		
28	COMPOSITE #3 (SS33 SS35 SS36 AND SS38)	Jun 29, 2023		Soil	K2	3-JI0002932				x	х	x	x	
29	COMPOSITE #4 (SS39 AND SS42)	Jun 29, 2023		Soil	K2	3-JI0002933				Х	х	Х	Х	
30	COMPOSITE #5 (SS43 SS44 AND SS46)	Jun 29, 2023		Soil	K2	3-JI0002934				х	х	х	х	

Eurofins Environment Testing NZ Ltd Eurofins Environment Testing Australia Pty Ltd

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston. Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

ABN: 50 005 085 521 Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000

NATA# 1261 Site# 1254

Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Eurofins ARL Pty Ltd

Company Name:

Address:

Soil & Rock Consultants

Level 1, 131 Lincoln Rd Henderson

Auckland **NEW ZEALAND**

Project Name: Project ID:

230599

Order No.: 230599 Report #: 1004441

Phone: 0011 64 9 835 1740 Fax:

0011 64 9 835 1847

Received: Jul 3, 2023 10:30 AM Due: Jul 10, 2023

Priority: 5 Day

Contact Name: Aaron Thorburn

		Sa	mple Detail			Asbestos - AS4964	Asbestos - AS4964	HOLD	Moisture Set	Organochlorine Pesticides (NZ MfE)	Metals M8 (NZ MfE)	Polycyclic Aromatic Hydrocarbons (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)
Auc	kland Laborato	ry - IANZ# 1327					Х	Х	Х	Х	Х	Х	Х
Chri	stchurch Labor	ratory - IANZ# 12	290			Х							Х
Exte	rnal Laborator	у											
31	SS34	Jun 29, 2023		Soil	K23-JI0002935				Х	Х		Х	Х
32	SS37	Jun 29, 2023		Soil	K23-JI0002936				Х	Х		Х	Х
33	SS41	Jun 29, 2023		Soil	K23-JI0002937				Х	Х		Х	Х
34	SS45	Jun 29, 2023		Soil	K23-JI0002938				Х	Х		Х	Х
35	SS47	Jun 29, 2023		Soil	K23-JI0002939				Х	Х		Х	Х
36	SS48	Jun 29, 2023		Soil	K23-JI0002940				Х	Х		Х	Х
37	SS09 DUP	Jun 29, 2023		Soil	K23-JI0003362			Х					
38	SS32 DUP	Jun 29, 2023		Soil	K23-JI0003363			Х					
39	SS48 DUP	Jun 29, 2023		Soil	K23-JI0003364			Х					
40	SS22	Jun 29, 2023		Soil	K23-JI0003365	Х						<u> </u>	
41	SS24	Jun 29, 2023		Soil	K23-JI0003366	Х							
42	SS25	Jun 29, 2023		Soil	K23-JI0003367	Х						<u> </u>	
43	SS26	Jun 29, 2023		Soil	K23-JI0003368	Х						<u> </u>	
44	SS27	Jun 29, 2023		Soil	K23-JI0003369	Х						$oxed{oxed}$	

web: www.eurofins.com.au

Eurofins Environment Testing NZ Ltd Eurofins Environment Testing Australia Pty Ltd

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston. Auckland 1061 Christchurch 7675 Tel: +64 9 526 4551 Tel: +64 3 343 5201 IANZ# 1327 IANZ# 1290

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Order No.:

Report #:

Phone:

Fax:

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 Brisbane 1/21 Smallwood Place Murarrie QLD 4172

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Eurofins ARL Pty Ltd

email: EnviroSales@eurofins.com

Soil & Rock Consultants

Level 1, 131 Lincoln Rd Henderson

Auckland

NEW ZEALAND

NATA# 1261 Site# 1254

1004441 0011 64 9 835 1740

0011 64 9 835 1847

230599

Received: Jul 3, 2023 10:30 AM Due: Jul 10, 2023

Priority: 5 Day

Contact Name: Aaron Thorburn

Project Name:

Company Name:

Address:

Project ID: 230599

		Sa	mple Detail			Asbestos - AS4964	Asbestos - AS4964	HOLD	Moisture Set	Organochlorine Pesticides (NZ MfE)	Metals M8 (NZ MfE)	Polycyclic Aromatic Hydrocarbons (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)
Auc	kland Laborator	y - IANZ# 1327					Х	Х	Х	Х	Х	Х	X
Chri	stchurch Labor	atory - IANZ# 1	290			Х							X
Exte	rnal Laboratory	1											
45	SS29	Jun 29, 2023		Soil	K23-JI0003370	Х							
46	SS30	Jun 29, 2023		Soil	K23-JI0003371	Х							
47	SS33	Jun 29, 2023		Soil	K23-JI0003372	Х							
48	SS35	Jun 29, 2023		Soil	K23-JI0003373	Х							
49	SS36	Jun 29, 2023		Soil	K23-JI0003374	Х							
50	SS38	Jun 29, 2023		Soil	K23-JI0003375	Х							
51	SS39	Jun 29, 2023		Soil	K23-JI0003376		Х						
52	SS40	Jun 29, 2023		Soil	K23-JI0003377		Х						
53	SS42	Jun 29, 2023		Soil	K23-JI0003378		Х						
54	SS43	Jun 29, 2023		Soil	K23-JI0003379		Х						
55	SS44	Jun 29, 2023		Soil	K23-JI0003380		Х						
56	SS46	Jun 29, 2023		Soil	K23-JI0003381		Х						
Test	Counts					17	17	3	36	36	28	13	8

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environmental Testing NZ Limited NZBN : 9429046024954 35 O'Rorke Road, Penrose, Auckland, New Zealand 1061 Tel: +64 9 526 4551 Page 18 of 27

Report Number: 1004441-S

Quality Control Results

Test	Units	Result 1	Accept Lim	tance Pass its Limits	Qualifying Code
Method Blank					
Organochlorine Pesticides (NZ MfE)					
2.4'-DDD	mg/kg	< 0.01	0.0	1 Pass	
2.4'-DDE	mg/kg	< 0.01	0.0	1 Pass	
2.4'-DDT	mg/kg	< 0.01	0.0	1 Pass	
4.4'-DDD	mg/kg	< 0.01	0.0	1 Pass	
4.4'-DDE	mg/kg	< 0.01	0.0	1 Pass	
4.4'-DDT	mg/kg	< 0.01	0.0	1 Pass	
a-HCH	mg/kg	< 0.01	0.0	1 Pass	
Aldrin	mg/kg	< 0.01	0.0	1 Pass	
b-HCH	mg/kg	< 0.01	0.0	1 Pass	
Chlordanes - Total	mg/kg	-	0.0	1 N/A	
cis-Chlordane	mg/kg	< 0.01	0.0	1 Pass	
d-HCH	mg/kg	< 0.01	0.0	1 Pass	
Dieldrin	mg/kg	< 0.01	0.0	1 Pass	
Endosulfan I	mg/kg	< 0.01	0.0		
Endosulfan II	mg/kg	< 0.01	0.0	1 Pass	
Endosulfan sulphate	mg/kg	< 0.01	0.0	1 Pass	
Endrin	mg/kg	< 0.01	0.0		
Endrin aldehyde	mg/kg	< 0.01	0.0		
Endrin ketone	mg/kg	< 0.01	0.0		
g-HCH (Lindane)	mg/kg	< 0.01	0.0		
Heptachlor	mg/kg	< 0.01	0.0		
Heptachlor epoxide	mg/kg	< 0.01	0.0		
Hexachlorobenzene	mg/kg	< 0.01	0.0		
Methoxychlor	mg/kg	< 0.01	0.0		
Toxaphene	mg/kg	< 0.5	9.0		
trans-Chlordane	mg/kg	< 0.01	0.0		
Method Blank	Ilig/kg	<u> </u>	0.0	1 1 433	
Metals M8 (NZ MfE)					
Arsenic	mg/kg	< 0.1	0.	1 Pass	
Cadmium	mg/kg	< 0.01	0.0		
Chromium	mg/kg	< 0.1	0.0		
Copper	mg/kg	< 0.1	0.		
Lead	mg/kg	< 0.1	0.		
Mercury	mg/kg	< 0.01	0.0		
Nickel	mg/kg	< 0.1	0.0		
Zinc	mg/kg	< 5	5		
Method Blank	IIIg/kg	_ < 3		Fass	
Polycyclic Aromatic Hydrocarbons (NZ MfE)					
Acenaphthene	ma/ka	40.03	0.0	3 Pass	
·	mg/kg	< 0.03			
Acenaphthylene	mg/kg	< 0.03	0.0		
Anthracene Penz (a) anthracene	mg/kg	< 0.03	0.0		
Benz(a)anthracene	mg/kg	< 0.03	0.0		
Benzo(a)pyrene	mg/kg	< 0.03	0.0		
Benzo(b&j)fluoranthene	mg/kg	< 0.03	0.0		
Benzo(g.h.i)perylene	mg/kg	< 0.03	0.0		
Benzo(k)fluoranthene	mg/kg	< 0.03	0.0		
Chrysene	mg/kg	< 0.03	0.0		
Dibenz(a.h)anthracene	mg/kg	< 0.03	0.0		
Fluoranthene	mg/kg	< 0.03	0.0		
Fluorene	mg/kg	< 0.03	0.0	3 Pass	

Page 19 of 27

Report Number: 1004441-S

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.03	0.03	Pass	
Naphthalene	mg/kg	< 0.1	0.1	Pass	
Phenanthrene	mg/kg	< 0.03	0.03	Pass	
Pyrene	mg/kg	< 0.03	0.03	Pass	
LCS - % Recovery					
Organochlorine Pesticides (NZ MfE)					
2.4'-DDD	%	86	70-130	Pass	
2.4'-DDE	%	109	70-130	Pass	
2.4'-DDT	%	104	70-130	Pass	
4.4'-DDD	%	96	70-130	Pass	
4.4'-DDE	%	95	70-130	Pass	
4.4'-DDT	%	108	70-130	Pass	
a-HCH	%	80	70-130	Pass	
Aldrin	%	123	70-130	Pass	
b-HCH	%	98	70-130	Pass	
cis-Chlordane	%	112	70-130	Pass	
d-HCH	%	83	70-130	Pass	
Dieldrin	%	88	70-130	Pass	
Endosulfan I	%	79	70-130	Pass	
Endosulfan II	%	75	70-130	Pass	
Endosulfan sulphate	%	90	70-130	Pass	
Endrin	%	91	70-130	Pass	
Endrin aldehyde	%	97	70-130	Pass	
Endrin ketone	%	90	70-130	Pass	
g-HCH (Lindane)	%	119	70-130	Pass	
Heptachlor	%	78	70-130	Pass	
Heptachlor epoxide	%	92	70-130	Pass	
Methoxychlor	%	98	70-130	Pass	
trans-Chlordane	%	100	70-130	Pass	
LCS - % Recovery					
Metals M8 (NZ MfE)					
Arsenic	%	96	80-120	Pass	
Cadmium	%	98	80-120	Pass	
Chromium	%	94	80-120	Pass	
Copper	%	95	80-120	Pass	
Lead	%	100	80-120	Pass	
Mercury	%	102	80-120	Pass	
Nickel	%	100	80-120	Pass	
Zinc	%	101	80-120	Pass	
LCS - % Recovery				•	
Polycyclic Aromatic Hydrocarbons (NZ MfE)					
Acenaphthene	%	100	70-130	Pass	
Acenaphthylene	%	90	70-130	Pass	
Anthracene	%	83	70-130	Pass	
Benz(a)anthracene	%	107	70-130	Pass	
Benzo(a)pyrene	%	100	70-130	Pass	
Benzo(b&j)fluoranthene	%	109	70-130	Pass	
Benzo(g.h.i)perylene	%	92	70-130	Pass	
Benzo(k)fluoranthene	%	101	70-130	Pass	
Chrysene	%	99	70-130	Pass	
Dibenz(a.h)anthracene	%	79	70-130	Pass	
Fluoranthene	%	74	70-130	Pass	
Fluorene	%	107	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	101	70-130	Pass	

Page 20 of 27

Report Number: 1004441-S

Test				Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Naphthalene			%	99	70-130	Pass	
Phenanthrene			%	76	70-130	Pass	
Pyrene			%	81	70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Organochlorine Pesticides (N	Z MfE)			Result 1			
cis-Chlordane	K23-JI0000784	NCP	%	103	70-130	Pass	
Endrin aldehyde	K23-JI0000784	NCP	%	100	70-130	Pass	
Endrin ketone	K23-JI0000881	NCP	%	96	70-130	Pass	
Hexachlorobenzene	K23-Jn0043994	NCP	%	2.0	70-130	Fail	
Spike - % Recovery							
Metals M8 (NZ MfE)				Result 1			
Cadmium	K23-JI0002906	CP	%	110	75-125	Pass	
Chromium	K23-JI0002906	CP	%	107	75-125	Pass	
Copper	K23-JI0002906	CP	%	107	75-125	Pass	
Lead	K23-JI0002906	CP	%	114	75-125	Pass	
Mercury	K23-JI0002906	СР	%	108	75-125	Pass	
Nickel	K23-JI0002906	CP	%	114	75-125	Pass	
Zinc	K23-JI0002906	CP	%	109	75-125	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocar	rbons (NZ MfE)			Result 1			
Acenaphthene	K23-JI0002906	CP	%	109	70-130	Pass	
Acenaphthylene	K23-JI0002906	CP	%	114	70-130	Pass	
Benzo(a)pyrene	K23-JI0002906	CP	%	113	70-130	Pass	
Benzo(g.h.i)perylene	K23-JI0002906	CP	%	116	70-130	Pass	
Benzo(k)fluoranthene	K23-JI0002906	CP	%	113	70-130	Pass	
Chrysene	K23-JI0002906	СР	%	123	70-130	Pass	
Dibenz(a.h)anthracene	K23-JI0002906	CP	%	118	70-130	Pass	
Fluoranthene	K23-JI0002906	CP	%	100	70-130	Pass	
Fluorene	K23-JI0002906	CP	%	107	70-130	Pass	
Naphthalene	K23-JI0002906	CP	%	101	70-130	Pass	
Phenanthrene	K23-JI0002906	CP	%	88	70-130	Pass	
Pyrene	K23-JI0002906	CP	%	106	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocar	rbons (NZ MfE)			Result 1			
Benz(a)anthracene	K23-JI0002916	CP	%	108	70-130	Pass	
Benzo(g.h.i)perylene	K23-JI0002916	CP	%	115	70-130	Pass	
Dibenz(a.h)anthracene	K23-JI0002916	CP	%	114	70-130	Pass	
Indeno(1.2.3-cd)pyrene	K23-JI0002916	CP	%	110	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides (N	Z MfE)			Result 1			
2.4'-DDD	K23-JI0002926	CP	%	79	70-130	Pass	
2.4'-DDE	K23-JI0002926	CP	%	123	70-130	Pass	
4.4'-DDE	K23-JI0002926	CP	%	106	70-130	Pass	
a-HCH	K23-JI0002926	CP	%	86	70-130	Pass	
b-HCH	K23-JI0002926	CP	%	105	70-130	Pass	
d-HCH	K23-JI0002926	CP	%	91	70-130	Pass	
Dieldrin	K23-JI0002926	СР	%	92	70-130	Pass	
Endosulfan I	K23-JI0002926	СР	%	77	70-130	Pass	
Endosulfan II	K23-JI0002926	СР	%	75	70-130	Pass	
Endrin	K23-JI0002926	СР	%	102	70-130	Pass	
Heptachlor epoxide	K23-JI0002926	СР	%	108	70-130	Pass	
trans-Chlordane	K23-JI0002926	СР	%	110	70-130	Pass	
Spike - % Recovery							

Page 21 of 27

Report Number: 1004441-S

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Metals M8 (NZ MfE)				Result 1					
Arsenic	K23-JI0002926	СР	%	115			75-125	Pass	
Chromium	K23-JI0002926	СР	%	120			75-125	Pass	
Copper	K23-JI0002926	СР	%	119			75-125	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocar	bons (NZ MfE)			Result 1					
Acenaphthene	K23-JI0002926	СР	%	91			70-130	Pass	
Acenaphthylene	K23-JI0002926	СР	%	86			70-130	Pass	
Anthracene	K23-JI0002926	СР	%	75			70-130	Pass	
Benzo(b&j)fluoranthene	K23-JI0002926	СР	%	125			70-130	Pass	
Chrysene	K23-JI0002926	СР	%	91			70-130	Pass	
Fluorene	K23-JI0002926	СР	%	102			70-130	Pass	
Naphthalene	K23-JI0002926	СР	%	91			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocar	bons (NZ MfE)			Result 1					
Anthracene	K23-JI0003088	NCP	%	94			70-130	Pass	
Benz(a)anthracene	K23-JI0003088	NCP	%	96			70-130	Pass	
Benzo(b&j)fluoranthene	K23-JI0003088	NCP	%	97			70-130	Pass	
Chrysene	K23-JI0003088	NCP	%	84			70-130	Pass	
Spike - % Recovery									
Organochlorine Pesticides (N	Z MfE)			Result 1					
2.4'-DDD	K23-JI0002938	СР	%	115			70-130	Pass	
2.4'-DDT	K23-JI0002938	CP	%	84			70-130	Pass	
4.4'-DDD	K23-JI0002938	CP	%	123			70-130	Pass	
4.4'-DDE	K23-JI0002938	CP	%	90			70-130	Pass	
a-HCH	K23-JI0002938	CP	%	103			70-130	Pass	
Aldrin	K23-JI0002938	CP	%	89			70-130	Pass	
d-HCH	K23-JI0002938	CP	%	109			70-130	Pass	
Dieldrin	K23-JI0002938	CP	%	106			70-130	Pass	
Endosulfan I	K23-JI0002938	CP	%	119			70-130	Pass	
Endosulfan II	K23-JI0002938	CP	%	100			70-130	Pass	
Endosulfan sulphate	K23-JI0002938	CP	%	111			70-130	Pass	
Heptachlor	K23-JI0002938	CP	%	106			70-130	Pass	
Heptachlor epoxide	K23-JI0002938	CP	%	117			70-130	Pass	
Methoxychlor	K23-JI0002938	CP	%	77			70-130	Pass	
trans-Chlordane	K23-JI0002938	CP	%	121			70-130	Pass	
Spike - % Recovery	1120 010002300	Ų,	70	121			70 100	1 455	
Polycyclic Aromatic Hydrocar	hons (N7 MfF)			Result 1					
Acenaphthene	K23-JI0002938	СР	%	106			70-130	Pass	
Acenaphthylene	K23-JI0002938	CP	%	115			70-130	Pass	
Benzo(a)pyrene	K23-JI0002938	CP	<u> </u>	79			70-130	Pass	
Benzo(k)fluoranthene	K23-JI0002938	CP	%	99			70-130	Pass	
Fluoranthene	K23-JI0002938	CP	%	97			70-130	Pass	
Fluorene	K23-JI0002938	CP	%	114			70-130	Pass	
Naphthalene	K23-JI0002938	CP	%	120			70-130	Pass	
Phenanthrene	K23-JI0002938	CP	%	103			70-130	Pass	
Pyrene	K23-JI0002938	CP	%	103			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					 -		1		
Organochlorine Pesticides (N	1'	1		Result 1	Result 2	RPD			
2.4'-DDD	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
2.4'-DDE	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
2.4'-DDT	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
4.4'-DDD	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	1

Page 22 of 27

Report Number: 1004441-S

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					-				
Organochlorine Pesticides (Na	Z MfE)			Result 1	Result 2	RPD			
4.4'-DDE	K23-JI0002905	СР	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
4.4'-DDT	K23-JI0002905	СР	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
a-HCH	K23-JI0002905	СР	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Aldrin	K23-JI0002905	СР	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
b-HCH	K23-JI0002905	СР	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Chlordanes - Total	K23-JI0002905	СР	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
cis-Chlordane	K23-JI0002905	СР	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
d-HCH	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Dieldrin	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endosulfan I	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endosulfan II	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endosulfan sulphate	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endrin	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endrin aldehyde	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endrin ketone	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
g-HCH (Lindane)	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Heptachlor	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Heptachlor epoxide	K23-JI0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
•		CP		1			30%		
Hexachlorobenzene Methoxychlor	K23-Jl0002905 K23-Jl0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
,			mg/kg	< 0.01	< 0.01	<1		Pass	
Toxaphene	K23-Jn0034680	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-Chlordane	K23-Jl0002905	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Duplicate				Doort 4	D It o	DDD			
Metals M8 (NZ MfE)	1400 110000005	0.0	"	Result 1	Result 2	RPD	000/	_	
Arsenic	K23-Jl0002905	CP	mg/kg	11	10	7.9	30%	Pass	
Cadmium	K23-JI0002905	CP	mg/kg	0.18	0.16	9.3	30%	Pass	
Chromium	K23-Jl0002905	CP	mg/kg	14	14	2.8	30%	Pass	
Copper	K23-JI0002905	CP	mg/kg	11	11	<1	30%	Pass	
Lead	K23-JI0002905	CP	mg/kg	13	13	5.0	30%	Pass	
Mercury	K23-JI0002905	CP	mg/kg	0.48	0.52	6.7	30%	Pass	
Nickel	K23-JI0002905	CP	mg/kg	6.3	6.5	3.1	30%	Pass	
Zinc	K23-Jl0002905	CP	mg/kg	84	82	2.5	30%	Pass	
Duplicate				T			T	I	
Sample Properties	1/00 11000000			Result 1	Result 2	RPD	2001	_	
% Moisture	K23-Jl0002905	СР	%	31	32	<1	30%	Pass	
Duplicate				T			T	I	
Polycyclic Aromatic Hydrocar	, ,			Result 1	Result 2	RPD		_	
Acenaphthene	K23-Jl0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Acenaphthylene	K23-Jl0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Anthracene	K23-JI0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benz(a)anthracene	K23-JI0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(a)pyrene	K23-JI0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(b&j)fluoranthene	K23-JI0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(g.h.i)perylene	K23-JI0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(k)fluoranthene	K23-JI0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Chrysene	K23-JI0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Dibenz(a.h)anthracene	K23-JI0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Fluoranthene	K23-JI0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Fluorene	K23-JI0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	K23-Jl0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Naphthalene	K23-JI0002905	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Phenanthrene	K23-JI0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Pyrene	K23-JI0002905	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	

Page 23 of 27

Report Number: 1004441-S

Duplicate									
Organochlorine Pesticides (NZ MfE	<u> </u>			Result 1	Result 2	RPD			
2.4'-DDD	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
2.4'-DDE	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
2.4'-DDT	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
4.4'-DDD	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
4.4'-DDE	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
4.4'-DDT	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
a-HCH	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Aldrin	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
b-HCH	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Chlordanes - Total	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
cis-Chlordane	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
d-HCH	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Dieldrin	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endosulfan I	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endosulfan II	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endosulfan sulphate	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endrin	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endrin aldehyde	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endrin ketone	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
g-HCH (Lindane)	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Heptachlor	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Heptachlor epoxide	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Hexachlorobenzene	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Methoxychlor	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
trans-Chlordane	K23-JI0002915	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Duplicate			199						
Metals M8 (NZ MfE)				Result 1	Result 2	RPD			
Arsenic	K23-JI0002915	СР	mg/kg	6.0	6.1	<1	30%	Pass	
Cadmium	K23-JI0002915	СР	mg/kg	0.24	0.20	19	30%	Pass	
Chromium	K23-JI0002915	СР	mg/kg	13	13	<1	30%	Pass	
Copper	K23-JI0002915	СР	mg/kg	24	25	3.6	30%	Pass	
Lead	K23-Jl0002915	СР	mg/kg	16	16	1.8	30%	Pass	
Mercury	K23-JI0002915	СР	mg/kg	0.70	0.74	5.9	30%	Pass	
Nickel	K23-Jl0002915	СР	mg/kg	7.3	6.3	15	30%	Pass	
Zinc	K23-Jl0002915	СР	mg/kg	130	130	1.6	30%	Pass	
Duplicate									
Sample Properties				Result 1	Result 2	RPD			
% Moisture	K23-Jl0002915	CP	%	54	54	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	(NZ MfE)			Result 1	Result 2	RPD			
Acenaphthene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Acenaphthylene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Anthracene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benz(a)anthracene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(a)pyrene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(b&j)fluoranthene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(g.h.i)perylene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(k)fluoranthene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Chrysene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Dibenz(a.h)anthracene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Fluoranthene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Fluorene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Naphthalene	K23-JI0002915	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Page 24 of 27

Report Number: 1004441-S

Date Reported: Jul 12, 2023
Document Set ID: 11223916
Version: 1, Version Date: 13/05/2024

Duplicate									
•	. (17.145)			D 11.4	D # 0	DDD	l		
Polycyclic Aromatic Hydroca				Result 1	Result 2	RPD		+	
Phenanthrene	K23-JI0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Pyrene	K23-Jl0002915	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Duplicate				I	1		ı		
Metals M8 (NZ MfE)			1	Result 1	Result 2	RPD			
Arsenic	K23-Jl0002925	CP	mg/kg	9.9	10	5.4	30%	Pass	
Cadmium	K23-JI0002925	CP	mg/kg	0.65	0.64	2.3	30%	Pass	
Chromium	K23-JI0002925	CP	mg/kg	13	13	4.6	30%	Pass	
Copper	K23-JI0002925	CP	mg/kg	18	19	7.0	30%	Pass	
Lead	K23-JI0002925	CP	mg/kg	16	17	7.5	30%	Pass	
Mercury	K23-JI0002925	CP	mg/kg	0.45	0.46	1.6	30%	Pass	
Nickel	K23-JI0002925	CP	mg/kg	6.1	6.5	6.7	30%	Pass	
Zinc	K23-JI0002925	СР	mg/kg	120	130	7.1	30%	Pass	
Duplicate									
Sample Properties				Result 1	Result 2	RPD			
% Moisture	K23-JI0002925	СР	%	44	45	<1	30%	Pass	
Duplicate									
Metals M8 (NZ MfE)				Result 1	Result 2	RPD			
Arsenic	K23-JI0002935	CP	mg/kg	18	22	22	30%	Pass	
Cadmium	K23-JI0002935	CP	mg/kg	0.04	0.04	2.2	30%	Pass	
Chromium	K23-JI0002935	CP	mg/kg	12	13	10	30%	Pass	
Copper	K23-JI0002935	CP	mg/kg	8.4	9.5	12	30%	Pass	
Lead		CP			15			1	
	K23-JI0002935		mg/kg	14		8.4	30%	Pass	
Mercury	K23-JI0002935	CP	mg/kg	0.21	0.23	10.0	30%	Pass	
Nickel	K23-JI0002935	CP	mg/kg	3.5	4.0	14	30%	Pass	
Zinc	K23-JI0002935	CP	mg/kg	41	45	9.2	30%	Pass	
Duplicate				T			T		
Sample Properties			1	Result 1	Result 2	RPD			
% Moisture	K23-JI0002935	CP	%	29	30	1.2	30%	Pass	
Duplicate					1		1		
Organochlorine Pesticides (N	IZ MfE)		1	Result 1	Result 2	RPD			
2.4'-DDD	K23-Jl0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
2.4'-DDE	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
2.4'-DDT	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
4.4'-DDD	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
4.4'-DDE	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
4.4'-DDT	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
a-HCH	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Aldrin	K23-JI0002937	СР	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
b-HCH	K23-JI0002937	СР	mg/kg	< 0.01	< 0.01	<1	30%	Pass	_
cis-Chlordane	K23-JI0002937	CP	mg/kg	0.03	< 0.01	200	30%	Fail	Q15
d-HCH	K23-JI0002937	СР	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Dieldrin	K23-JI0002937	CP	mg/kg	0.03	< 0.01	160	30%	Fail	Q15
Endosulfan I	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endosulfan II	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endosulfan sulphate	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Endosulian sulphate Endrin	K23-JI0002937	CP CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
		CP CP		i			1		
Endrin aldehyde	K23-JI0002937		mg/kg	< 0.01	0.02	200	30%	Fail	Q15
Endrin ketone	K23-JI0002937	CP	mg/kg	0.02	< 0.01	130	30%	Fail	Q15
g-HCH (Lindane)	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Heptachlor	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Heptachlor epoxide	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Hexachlorobenzene	K23-Jl0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Methoxychlor	K23-Jl0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
trans-Chlordane	K23-JI0002937	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	

Page 25 of 27

Report Number: 1004441-S

Date Reported: Jul 12, 2023 Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

Duplicate									-
Polycyclic Aromatic Hydroca	rbons (NZ MfE)			Result 1	Result 2	RPD			
Acenaphthene	K23-JI0002937	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Acenaphthylene	K23-JI0002937	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Anthracene	K23-Jl0002937	CP	mg/kg	0.09	< 0.03	100	30%	Fail	Q15
Benz(a)anthracene	K23-JI0002937	CP	mg/kg	0.12	< 0.03	130	30%	Fail	Q15
Benzo(a)pyrene	K23-JI0002937	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(b&j)fluoranthene	K23-JI0002937	CP	mg/kg	0.09	< 0.03	150	30%	Fail	Q15
Benzo(g.h.i)perylene	K23-JI0002937	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(k)fluoranthene	K23-JI0002937	CP	mg/kg	0.12	< 0.03	120	30%	Fail	Q15
Chrysene	K23-JI0002937	CP	mg/kg	0.10	< 0.03	95	30%	Fail	Q15
Dibenz(a.h)anthracene	K23-JI0002937	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Fluorene	K23-JI0002937	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Naphthalene	K23-Jl0002937	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	·
Phenanthrene	K23-JI0002937	CP	mg/kg	0.07	< 0.03	110	30%	Fail	Q15
Pyrene	K23-JI0002937	СР	mg/kg	0.15	0.04	110	30%	Fail	Q15

Date Reported: Jul 12, 2023 Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

Report Number: 1004441-S

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Nο Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Description Code

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

N07

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Katvana Gausel Analytical Services Manager Kate Stuart Senior Analyst-Asbestos Raymond Siu Senior Analyst-Metal Raymond Siu Senior Analyst-Organic Sophie Bush Senior Analyst-Asbestos

Raymond Siu

Senior Instrument Chemist (Key Technical Personnel)

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates IANZ accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Eurofins Environmental Testing NZ Limited NZBN: 9429046024954

Page 27 of 27 Report Number: 1004441-S

Date Reported: Jul 12, 2023 Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

Certificate of Analysis

Environment Testing

Soil & Rock Consultants Level 1, 131 Lincoln Rd Henderson **Auckland NEW ZEALAND**

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Aaron Thorburn Attention: 1004441-AID Report

Project Name

Project ID 230599 Jul 03, 2023 Received Date **Date Reported** Jul 12, 2023

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 - 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral **Fibres**

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-

sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence IANZ Accreditation does not cover the performance of this service (non-IANZ results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 % " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

> Eurofins Environmental Testing NZ Limited NZBN: 9429046024954 43 Detroit Drive, Rolleston, Christchurch, New Zealand 7675 Tel: +64 3 343 5201

Report Number: 1004441-AID

Page 1 of 12

Project Name

Project ID 230599

Date Sampled Jun 29, 2023 Report 1004441-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
SS23	23-Jl0002928	Jun 29, 2023	Approximate Sample 478g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS28	23-Jl0002929	Jun 29, 2023	Approximate Sample 393g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS34	23-Jl0002935	Jun 29, 2023	Approximate Sample 330g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS37	23-Jl0002936	Jun 29, 2023	Approximate Sample 341g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS41	23-Jl0002937	Jun 29, 2023	Approximate Sample 365g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS45	23-Jl0002938	Jun 29, 2023	Approximate Sample 454g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS47	23-Jl0002939	Jun 29, 2023	Approximate Sample 353g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS48	23-Jl0002940	Jun 29, 2023	Approximate Sample 336g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Eurofins Environmental Testing NZ Limited NZBN: 9429046024954
43 Detroit Drive, Rolleston, Christchurch, New Zealand 7675 Tel: +64 3 343 5201

Date Reported: Jul 12, 2023

Document Set ID: 11223916

Version: 1, Version Date: 13/05/2024

Report Number: 1004441-AID

Version: 1, Version Date: 13/05/2024

Environment Testing

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
SS22	23-JI0003365	Jun 29, 2023	Approximate Sample 371g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS24	23-JI0003366	Jun 29, 2023	Approximate Sample 373g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS25	23-Jl0003367	Jun 29, 2023	Approximate Sample 393g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS26	23-JI0003368	Jun 29, 2023	Approximate Sample 526g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS27	23-Jl0003369	Jun 29, 2023	Approximate Sample 484g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS29	23-JI0003370	Jun 29, 2023	Approximate Sample 657g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS30	23-JI0003371	Jun 29, 2023	Approximate Sample 343g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS33	23-JI0003372	Jun 29, 2023	Approximate Sample 344g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS35	23-JI0003373	Jun 29, 2023	Approximate Sample 321g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS36	23-JI0003374	Jun 29, 2023	Approximate Sample 279g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS38	23-JI0003375	Jun 29, 2023	Approximate Sample 292g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS39	23-JI0003376	Jun 29, 2023	Approximate Sample 207g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS40	23-Jl0003377	Jun 29, 2023	Approximate Sample 131g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Eurofins Environmental Testing NZ Limited NZBN : 9429046024954

Date Reported: Jul 12, 2023 43 Detroit Drive, Rolleston, Christchurch, New Zealand 7675 Tel: +64 3 343 5201

Document Set ID: 11223916

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
SS42	23-JI0003378	Jun 29, 2023	Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS43	23-Jl0003379	Jun 29, 2023	Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS44	23-Jl0003380	Jun 29, 2023	Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS46	23-Jl0003381	Jun 29, 2023	Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Eurofins Environmental Testing NZ Limited NZBN: 9429046024954 43 Detroit Drive, Rolleston, Christchurch, New Zealand 7675 Tel: +64 3 343 5201 Page 4 of 12

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020ChristchurchJul 12, 2023Indefinite

Eurofins Environmental Testing NZ Limited NZBN : 9429046024954 43 Detroit Drive, Rolleston, Christchurch, New Zealand 7675 Tel: +64 3 343 5201

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston. Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

ABN: 50 005 085 521 Melbourne

NATA# 1261 Site# 1254

Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Phone:

Fax:

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

0011 64 9 835 1740

0011 64 9 835 1847

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Eurofins ARL Pty Ltd

Company Name:

Address:

Soil & Rock Consultants

Level 1, 131 Lincoln Rd Henderson

Auckland **NEW ZEALAND**

Project Name: Project ID:

230599

Order No.: 230599 Received: Jul 3, 2023 10:30 AM Report #: 1004441

Due: Jul 10, 2023 Priority: 5 Day

Contact Name: Aaron Thorburn

Eurofins Analytical Services Manager: Katyana Gausel

	Sample Detail							HOLD	Moisture Set	Organochlorine Pesticides (NZ MfE)	Metals M8 (NZ MfE)	Polycyclic Aromatic Hydrocarbons (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)
Auc	kland Laborator	y - IANZ# 1327					Х	Х	Х	Х	Х	Х	Х
Chri	stchurch Labor	atory - IANZ# 1	290			Х							Х
Exte	rnal Laboratory	,											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SS01	Jun 29, 2023		Soil	K23-JI0002905				Х	Х	Х		
2	SS02	Jun 29, 2023		Soil	K23-JI0002906				Х	Х	Х		
3	SS03	Jun 29, 2023		Soil	K23-JI0002907				Х	Х	Х		
4	SS04	Jun 29, 2023		Soil	K23-Jl0002908				Х	Х	Х		
5	SS05	Jun 29, 2023		Soil	K23-Jl0002909				Х	Х	Х		
6	SS06	Jun 29, 2023		Soil	K23-Jl0002910				Х	Х	Х		
7	SS07	Jun 29, 2023		Soil	K23-JI0002911				Х	Х	Х		
8	SS08	Jun 29, 2023		Soil	K23-JI0002912				Х	Х	Х		
9	SS09	Jun 29, 2023		Soil	K23-JI0002913				Х	Х	Х		
10	SS10	Jun 29, 2023		Soil	K23-JI0002914				Х	Х	Х		\perp
11	SS11	Jun 29, 2023		Soil	K23-JI0002915				Х	Х	Х		
12	SS12	Jun 29, 2023		Soil	K23-JI0002916				Х	Х	Х		

Date Reported: Jul 12, 2023

Eurofins Environment Testing NZ Ltd Eurofins Environment Testing Australia Pty Ltd

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston. Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

ABN: 50 005 085 521

NATA# 1261 Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Priority:

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

5 Day

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Eurofins ARL Pty Ltd

Company Name:

Address:

Project ID:

Soil & Rock Consultants

Level 1, 131 Lincoln Rd Henderson

NEW ZEALAND

Auckland

Project Name:

230599

Order No.: 230599 Received: Jul 3, 2023 10:30 AM Report #: 1004441 Due: Jul 10, 2023

Phone: 0011 64 9 835 1740 Fax:

0011 64 9 835 1847 **Contact Name:** Aaron Thorburn

Eurofins Analytical Services Manager: Katyana Gausel

	Sample Detail							HOLD	Moisture Set	Organochlorine Pesticides (NZ MfE)	Metals M8 (NZ MfE)	Polycyclic Aromatic Hydrocarbons (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)
Auc	kland Laborato	ry - IANZ# 1327					Х	Х	Х	Х	Х	Х	Х
Chri	stchurch Labor	atory - IANZ# 12	290			Х							Х
Exte	rnal Laboratory	<i>'</i>											
13	SS13	Jun 29, 2023		Soil	K23-JI0002917				Х	Х	Х		
14	SS14	Jun 29, 2023		Soil	K23-JI0002918				Х	Х	Х		
15	SS15	Jun 29, 2023		Soil	K23-JI0002919				Х	Х	Х		
16	SS16	Jun 29, 2023		Soil	K23-JI0002920				Х	Х	Х		
17	SS17	Jun 29, 2023		Soil	K23-JI0002921				Х	Х	Х		
18	SS18	Jun 29, 2023		Soil	K23-JI0002922				Х	Х	Х		
19	SS19	Jun 29, 2023		Soil	K23-Jl0002923				Х	Х	Х		
20	SS20	Jun 29, 2023		Soil	K23-Jl0002924				Х	Х	Х		
21	SS21	Jun 29, 2023		Soil	K23-JI0002925				Х	Х	Х		
22	COMPOSITE #1 (SS22 SS24 AND SS25)	Jun 29, 2023		Soil	K23-JI0002926				х	х	х	х	
23	COMPOSITE #2 (SS26	Jun 29, 2023		Soil	K23-JI0002927				Х	х	х	Х	

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston. Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

ABN: 50 005 085 521

Tel: +61 3 8564 5000

NATA# 1261 Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Phone:

Fax:

179 Magowar Road Girraween NSW 2145 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400

0011 64 9 835 1740

0011 64 9 835 1847

Sydney

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Eurofins ARL Pty Ltd

Company Name:

Address:

Soil & Rock Consultants

Level 1, 131 Lincoln Rd Henderson

Auckland

NEW ZEALAND

Project Name:

Project ID: 230599 Order No.: 230599 Received: Jul 3, 2023 10:30 AM Report #: 1004441

Due: Jul 10, 2023

Priority: 5 Day

Contact Name: Aaron Thorburn

Eurofins Analytical Services Manager: Katyana Gausel

	Sample Detail							Asbestos - AS4964	HOLD	Moisture Set	Organochlorine Pesticides (NZ MfE)	Metals M8 (NZ MfE)	Polycyclic Aromatic Hydrocarbons (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)
Auc	kland Laborator	y - IANZ# 1327						Х	Х	Х	Х	Х	Х	Х
Chri	stchurch Labora	atory - IANZ# 1	290				Х							Х
Exte	rnal Laboratory	,												
	SS27 SS29 AND SS30)													
24	SS23	Jun 29, 2023		Soil		K23-Jl0002928				Х	Х		Х	Х
25	SS28	Jun 29, 2023		Soil		K23-Jl0002929				Х	Х		Х	Х
26	SS31	Jun 29, 2023		Soil		K23-Jl0002930				Х	Х	Х		
27	SS32	Jun 29, 2023		Soil		K23-Jl0002931				Х	Х	Х		
28	COMPOSITE #3 (SS33 SS35 SS36 AND SS38)	Jun 29, 2023		Soil		K23-Jl0002932				Х	x	x	х	
29	COMPOSITE #4 (SS39 AND SS42)	Jun 29, 2023		Soil		K23-JI0002933				Х	х	Х	Х	
30	COMPOSITE #5 (SS43 SS44 AND SS46)	Jun 29, 2023		Soil		K23-JI0002934				х	х	х	х	

Date Reported: Jul 12, 2023

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston. Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

ABN: 50 005 085 521 Melbourne

Geelong

Grovedale

VIC 3216

Phone:

Fax:

6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254

Sydney 19/8 Lewalan Street 179 Magowar Road Girraween NSW 2145 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400

0011 64 9 835 1740

0011 64 9 835 1847

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Eurofins ARL Pty Ltd

Company Name:

Soil & Rock Consultants

Address:

Level 1, 131 Lincoln Rd Henderson

Auckland

NEW ZEALAND

Project Name:

Project ID: 230599 Order No.: 230599 Received: Jul 3, 2023 10:30 AM Report #: 1004441

Due: Jul 10, 2023 Priority: 5 Day

Contact Name: Aaron Thorburn

Eurofins Analytical Services Manager: Katyana Gausel

	Sample Detail							HOLD	Moisture Set	Organochlorine Pesticides (NZ MfE)	Metals M8 (NZ MfE)	Polycyclic Aromatic Hydrocarbons (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)
Auc	kland Laborator	ry - IANZ# 1327					Х	Х	Х	Х	Х	Х	Х
Chri	stchurch Labor	atory - IANZ# 12	290			Х							Х
Exte	rnal Laboratory	<u>'</u>											
31	SS34	Jun 29, 2023		Soil	K23-JI0002935				Х	Х		Х	Х
32	SS37	Jun 29, 2023		Soil	K23-JI0002936				Х	Х		Х	Х
33	SS41	Jun 29, 2023		Soil	K23-JI0002937				Х	Х		Х	Х
34	SS45	Jun 29, 2023		Soil	K23-JI0002938				Х	Х		Х	Х
35	SS47	Jun 29, 2023		Soil	K23-JI0002939				Х	Х		Х	Х
36	SS48	Jun 29, 2023		Soil	K23-JI0002940				Х	Х		Х	Х
37	SS09 DUP	Jun 29, 2023		Soil	K23-JI0003362			Х					
38	SS32 DUP	Jun 29, 2023		Soil	K23-JI0003363			Х					
39	SS48 DUP	Jun 29, 2023		Soil	K23-JI0003364			Х					
40	SS22	Jun 29, 2023		Soil	K23-JI0003365	Х							
41	SS24	Jun 29, 2023		Soil	K23-JI0003366	Х							
42	SS25	Jun 29, 2023		Soil	K23-JI0003367	Х							
43	SS26	Jun 29, 2023		Soil	K23-JI0003368	Х							
44	SS27	Jun 29, 2023		Soil	K23-JI0003369	Х							

Page 9 of 12

Date Reported: Jul 12, 2023

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston. Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

ABN: 50 005 085 521

NATA# 1261 Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000

Phone:

Fax:

179 Magowar Road Girraween NSW 2145 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400

Sydney

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Eurofins ARL Pty Ltd

Company Name:

Address:

Soil & Rock Consultants

Level 1, 131 Lincoln Rd Henderson

Auckland

NEW ZEALAND

Project Name: Project ID:

230599

Order No.: 230599 Received: Jul 3, 2023 10:30 AM Report #:

1004441 Due: Jul 10, 2023 0011 64 9 835 1740 Priority: 5 Day

0011 64 9 835 1847 **Contact Name:** Aaron Thorburn

Eurofins Analytical Services Manager: Katyana Gausel

	Sample Detail							HOLD	Moisture Set	Organochlorine Pesticides (NZ MfE)	Metals M8 (NZ MfE)	Polycyclic Aromatic Hydrocarbons (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)
Auc	kland Laborator	y - IANZ# 1327					Х	Х	Х	Х	Х	Х	Х
Chri	stchurch Labor	atory - IANZ# 1	290			Х							Х
Exte	rnal Laboratory				•								
45	SS29	Jun 29, 2023		Soil	K23-JI0003370	Х							
46	SS30	Jun 29, 2023		Soil	K23-JI0003371	Х							
47	SS33	Jun 29, 2023		Soil	K23-JI0003372	Х							
48	SS35	Jun 29, 2023		Soil	K23-JI0003373	Х							
49	SS36	Jun 29, 2023		Soil	K23-JI0003374	Х							
50	SS38	Jun 29, 2023		Soil	K23-JI0003375	Х							
51	SS39	Jun 29, 2023		Soil	K23-JI0003376		Х						
52	SS40	Jun 29, 2023		Soil	K23-JI0003377		Х						
53	SS42	Jun 29, 2023		Soil	K23-JI0003378		Х						
54	SS43	Jun 29, 2023		Soil	K23-JI0003379		Х						
55	SS44	Jun 29, 2023		Soil	K23-JI0003380		Х						
56	SS46	Jun 29, 2023		Soil	K23-JI0003381		Х						
Test	Counts	17	17	3	36	36	28	13	8				

Internal Quality Control Review and Glossary General

- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated
- Samples were analysed on an 'as received' basis.
- Information identified on this report with the colour blue indicates data provided by customer that may have an impact on the results
- 5. This report replaces any interim results previously issued

Holding Times

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w) Airborne fibre filter loading as Fibres (N) per Fields counted (n) Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C) Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m) % w/w

F/fld

g, kg

Concentration in grams per kilogram Volume, e.g. of air as measured in AFM (**V** = **r** x **t**) g/kg L, mL

L/min Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r)

Time (t), e.g. of air sample collection period min

Calculations

Airborne Fibre Concentration: $C = \left(\frac{A}{a}\right) \times \left(\frac{N}{p}\right) \times \left(\frac{1}{r}\right) \times \left(\frac{1}{t}\right) = K \times \left(\frac{N}{p}\right) \times \left(\frac{1}{V}\right)$

Asbestos Content (as asbestos): $\% w/w = \frac{(m \times P_A)}{M}$ Weighted Average (of asbestos): $\%_{WA} = \sum_{x} \frac{(m \times P_A)_x}{x}$

Terms

Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 *Appendix* 2, else assumed to be 15% in accordance with WA DOH *Appendix* 2 (**P**_A). %asbestos

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the

NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.

Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable ΑF

material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable"

AFM Airborne Fibre Monitoring, e.g. by the MFM.

Amosite Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.

AS

Asbestos Content (as asbestos) Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).

Chrysotile Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004

COC Chain of Custody

Crocidolite Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.

Dry Sample is dried by heating prior to analysis

DS Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.

Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA FA

generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.

Fibre Count Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003

Fibre ID Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos. Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).

HSG248 HSG264 UK HSE HSG264, Asbestos: The Survey Guide (2012).

ISO (also ISO/IEC) International Organization for Standardization / International Electrotechnical Commission.

Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece K Factor

graticule area of the specific microscope used for the analysis (a).

LOR

NEPM (also ASC NEPM)

WA DOH

MFM (also NOHSC:3003) Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission. Guidance Note on the Membrane

Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)]. National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).

Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004. Organic

PCM Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.

Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004. PLM Sampling Unless otherwise stated Eurofins are not responsible for sampling equipment or the sampling process

SMF Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.

SRA

Trace Analysis Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.

UK HSE HSG United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication,

UMF Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004. May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos

> Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis

Weighted Average Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA).

> Eurofins Environmental Testing NZ Limited NZBN: 9429046024954 Page 11 of 12 43 Detroit Drive, Rolleston, Christchurch, New Zealand 7675 Tel: +64 3 343 5201 Report Number: 1004441-AID

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 No

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Asbestos Counter/Identifier:

Laura Liu Senior Analyst-Asbestos
Adelle Black Senior Analyst-Asbestos
Kate Stuart Senior Analyst-Asbestos

Authorised by:

Kate Stuart Senior Analyst-Asbestos Sophie Bush Senior Analyst-Asbestos

Shbuh

Sophie Bush

Senior Analyst-Asbestos (Key Technical Personnel)

Final Report – this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates ISO/IEC 17025:2017 accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Eurofins Environmental Testing NZ Limited NZBN : 9429046024954 Page 12 of 12
43 Detroit Drive. Rolleston. Christchurch. New Zealand 7675 Tel: +64 3 343 5201 Report Number: 1004441-AID

Date Reported: Jul 12, 2023

Document Set ID: 11223916

Version: 1, Version Date: 13/05/2024

CHAIN OF CUSTODY RECORD	ı
ABN 50 005 085 521	

Wellington Office
85 Port Road, Seaview, Lower Hutt 5011, NZ
0800 856450 (free dial) OnurMehmet@eurofins.com

Christchurch Office
43 Detroit Drive Rolleston 7675, NZ
0800 856450 (free dial) OnurMehmet@eurofins.com

Company	Soil & Rock	Consultants	Purcha	se Order			230	0599		Project Manager		Aaron Thorburn		Proj	ect Na	me	1	185 Sway	yne Road, Camb	oridge	
Address	450a Dank Street WHAN	NCAPEL0442	Quot	e ID №						Project №		230599		Repo	ort For	mat			pdf, xls		
Contact Name	158a Bank Street, WHAN		or "Filtered")											Email	for Re	sults	aar	on.thork	burn@soilandro	ck.co.nz	
Phone №	02139	92097	y"Total" c											_			☐ 1 DAY*		2 DAY*	☐ 3 DAY*	_
Special Directio	If Asbestos detected, plo	ease undertake	Analysis ested, please specif	Heavy Metals (M8)	<u>a</u>										n Arou uireme	ents	☑ 5 DAY (S		Other () * Surcharges apply	,
	sample.		A are reques	eavy Mei	00P											Cont	ainers			f Shipment	
Relinquished b	у		ire metals	Ĩ										2	91 .91 191 .91	Glass	Glass		Courier (#	(د.	,
(Signature) (Time / Date)		· // ·	Note: Whe											L Plastic	omL Plas	Amber	10mLvial - Amber Jar	stos	Hand Delivered	J	
(Time / Date)	Client Sample ID	// Date	Matrix											1	125	200mL	4 125mL		Postal Sample Comme	ents / DG Hazard	
N2	SS01				~														Warı	rning	
1		29/06/23	Soil	X	X												X				
2	SS02	29/05/23	Soil	X	X												X				
3	SS03	29/05/23	Soil	X	X												×				
4	SS04	29/05/23	Soil	X	X												X				
5	SS05	29/05/23	Soil	X	X												X				
6	SS06	29/05/23	Soil	X	X												X	#	/ 1004	1441	Ī
7	SS07	29/05/23	Soil	X	×												×		100		
8	SS08	29/05/23	Soil	X	X												×				
0	SS09	29/05/23	Soil		X											\vdash	X				
9				X																	Ī
10	SS10	29/05/23	Soil	X	X												X				
		Total Co	ounts																		
Laboratory Use	Received By			A	UCK WI	ELL CH	ICH MEI	LB	Date		Time		Signature						Temperature		
, , , , ,	Received By			А	UCK WI	ELL CH	ICH MEI	LB	Date	/	Time	::	Signature						Report №		

CHAIN OF	CUSTODY	RECORD

Wellington Office
85 Port Road, Seaview, Lower Hutt 5011, NZ
0800 856450 (free dial) OnurMehmet@eurofins.com

Christchurch Office
43 Detroit Drive Rolleston 7675, NZ
0800 856450 (free dial) OnurMehmet@eurofins.com

Company	Soil & Rock	Consultants	Purcha	se Order			230	1599		Project Manager		Aaron Thorburn		Proje	ect Na	me		185 Sw	vayne Road, Cambi	ridge
Address	450a Dawk Chroat WIIIA	NCADEL0442	Quot	e ID №						Project №		230599		Repo	rt For	mat			pdf, xls	
Contact Name	158a Bank Street, WHAI	horburn	or "Filtered")											Email	for Re	sults	aa	aron.tho	orburn@soilandroc	ck.co.nz
Phone №	02139	92097	fy "Total" o											_			☐ 1 DAY*	,	☐ 2 DAY*	☐ 3 DAY*
Special Direction	If Asbestos detected, pl Quantitative Assessmen sample.		Analysis ested, please speci	Heavy Metals (M8)	OCP										n Arou uireme	nts	✓ 5 DAY ((Std.)	Other (* Surcharges apply
Relinquished by	·		s are reque	Неаvу М	0														✓ Courier (#)
(Signature)			here metal											tic	astic	er Glass	al ar Glass		☐ Hand Delivered	ď
(Time / Date)			(Note: W											1L Plas	25mL Pla	nL Ambe	40mLvi nL Ambe	stos	☐ Postal	
Nº	Client Sample ID	Date	Matrix	-										6	1 –	200r	125r			nts / DG Hazard
1	SS11	29/05/23	Soil	X	×												>	<		····s
2	SS12	29/05/23	Soil	X	X												>			
3	SS13	29/05/23	Soil	×	X											F	>			
4	SS14	29/05/23	Soil	X	X												>			
5	SS15	29/05/23	Soil	X	X											H	>			
																H				
6	SS16	29/05/23	Soil	X	X												>			
7	SS17	29/05/23	Soil	X	X												>			
8	SS18	29/05/23	Soil	X	X												>	(
9	SS19	29/05/23	Soil	X	X												>	<		
10	SS20	29/05/23	Soil	X	X												>	<		
		Total Co	ounts																	
Laboratory Use (Received By			A	UCK WE	ELL CH	CH MEI	LB	Date		Time		Signature						Temperature	
Laboratory Use (Received By			A	UCK WE	ELL CH	CH MEI	LB	Date	/	Time	_:	Signature						Report №	

CHAIN OF CUSTODY RECORD
ABN 50 005 085 521

Wellington Office
85 Port Road, Seaview, Lower Hutt 5011, NZ
0800 856450 (free dial) OnurMehmet@eurofins.com

Christchurch Office
43 Detroit Drive Rolleston 7675, NZ
0800 856450 (free dial) OnurMehmet@eurofins.com

	Company	Soil & F	Rock Consulta	ants	Purcha	se Order			230	599			Project I	Manager		Aa	ron The	orburn			Projec	ct Name	е		185 S	wayne Road, Can	bridge	
	Address	450a Dank Street V	A/LIANC AREL	0442	Quot	e ID №							Proje	ct №			23059	99			Report	Forma	at			pdf, xls		
	Address	158a Bank Street, V	ron Thorburn	U112	or "Filtered")															E	Email fo	or Resu	Its		aaron.th	orburn@soilandr	ock.co.nz	
	Phone №	(021392097		ify "Total"					s ID)											Turn	Around	Ε] 1 DAY	Y*	2 DAY*	☐ 3 DAY	
Spe	cial Direction	If Asbestos detecte Quantitative Asses sample.			Analysis ested, please spec	Heavy Metals (M8)	OCP	РАН	Asbestos ID	B21A-NZ (HM [M8] and Asbestos ID)											Requir	rement			Y (Std.)	Other (* Surcharges) apply
Reli	inquished by	<u> </u>			s are reque	leavy M	0	۵	Asbe	(HM [M8																✓ Courier (#	, , , , , , , , , , , , , , , , , , ,)
	Signature)				Where metals					B21A-NZ										,	stic Pastic	Plastic	oer Glass	oer Glass	s bag	Hand Deliver	ed	,
(Т	ime / Date)	:	_	/ <u>_</u> /	(Note:															:	1L Pla 250mL F	125mL F	JmL Ami 40ml	5mL Am	Jar Asbestos	Postal		
Nº		Client Sample ID		Date	Matrix																		20	12		Sample Comm Wa	ents / DG Ha	zard
1		SS21		29/06/23	Soil	X	X																		X			
2	Composi	ite # 1 (SS22, SS24 and	d SS25)	29/06/23	Soil	X	X	X	X																××			
3	Composite #	# 2 (SS26, SS27, SS29	and SS30)	29/06/23	Soil	X	X	X	X																××			
4		SS23		29/06/23	Soil		X	X		X															××			
5		SS28		29/06/23	Soil		X	×		X															××			
6		SS31		29/06/23	Soil	X	×																		X			
7		SS32		29/06/23	Soil	X	X																		X			
8	Composite #	# 3 (SS33, SS35, SS36	and SS38)	29/06/23	Soil	X	X	X	X																××			
9	Composi	ite # 4 (SS39 and SS42))	29/06/23	Soil	X	X	X	X																××			
10	Composi	ite # 5 (SS43, SS44 and	d SS46)	29/06/23	Soil	X	X	X	X																××			
				Total (Counts																							
l ah	oratory Use On	Received By				А	UCK WI	ELL CH	CH MEL	_B	Da	ate		_/	Tim	ne		:	Signat	ture						Temperature		
Lau	oratory use Off	Received By				А	UCK WI	ELL CH	CH MEL	В	Da	ate	/_	_1	Tim	ne	_:_		Signat	ture						Report №		

	CHAIN O	F CUSTODY	RECORD
-			

Wellington Office
85 Port Road, Seaview, Lower Hutt 5011, NZ
0800 856450 (free dial) OnurMehmet@eurofins.com

Christchurch Office
43 Detroit Drive Rolleston 7675, NZ
0800 856450 (free dial) OnurMehmet@eurofins.com

Company	,	oil & Roc	k Consultants		Purcha	se Order			230	599		Project Ma	nager		Aaron T	horburn			Pro	ject Na	me		-	185 Sw	vayne Road, Can	nbridge	
Address	150a Dank S	troot WU	ANGAREI 0112		Quote	e ID №						Project	Nº		230	599			Rep	ort For	mat				pdf, xls		
Contact Na			Thorburn		or "Filtered")														Email	for Re	sults		aaı	ron.thc	orburn@soilandr	rock.co.nz	
Phone N		021	392097		sify "Total"					s ID)									Tur	n Aroı	ınd	<u> </u>	DAY*		☐ 2 DAY*	3 DA	4Y*
Special Direc		detected, Assessm	please undertake ent on each individ	lual	Analysis quested, please spec	Heavy Metals (M8)	OCP	РАН	Asbestos ID	B21A-NZ (HM [M8] and Asbestos ID)										uireme	ents	√ 5 ainers		3td.)	Other (* Surchar) rges apply
Relinquishe	d by				als are rec	Heavy			Asb	Z (HM [N														П	✓ Courier (#)
(Signature	e)				Where met					B21A-N									stic	lastic	oer Glass	vial	Del Glass	s bag	Hand Deliver	red	
(Time / Dat			//_	_	(Note: \														1L Pla	ZSUML F	JmL Amb	40mL	omt Aim. Jar	Asbestos	☐ Postal		
Nº	Client Sampl	e ID	Da	te	Matrix																200	100	7		Sample Comm Wa	nents / DG H arning	Hazard
1	SS34		29/06	6/23	Soil		X	×		X													X	X			
2	SS37		29/06	6/23	Soil		X	X		X													X	X			
3	SS41		29/00	6/23	Soil		X	×		X													X	X			
4	SS45		29/00	6/23	Soil		X	X		X														X			
5	SS47		29/06		Soil		X	X		X											H						
3																					H			X			
6	SS48		29/00	6/23	Soil		×	X		X											₽		X	X			
7																					L						
8																											
9																											
10																											
				Total C	ounts																						
	Received	I By				A	UCK WI	ELL CH	CH MEI	_B	Date	//	/ <u></u>	Time	_	: <u> </u>	Signa	ature							Temperature		
Laboratory I	Jse Only Received	I By				А	UCK WI	ELL CH	CH MEI	_B	Date	//	/	Time		:	Signa	ature							Report №		

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand ♦ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 2

SPv1

Client:

Soil & Rock Consultants

Contact: Aaron Thorburn

C/- Soil & Rock Consultants

PO Box 21424 Henderson Auckland 0650 Lab No:
Date Received:
Date Reported:

02-Aug-2023 15-Aug-2023

Quote No: Order No:

125516

3335055

Client Reference:

230599 - Fonterra Hautapu - 185 Swayne Road, Cambridge (Contam)

Submitted By: Aaron Thorburn

Sample Type: Aqueous					
Sam	ple Name:	PZ02	PZ06	PZ08	PZ09
Lak	Number:	3335055.1	3335055.2	3335055.3	3335055.4
Individual Tests	<u>.</u>				
Chloride	g/m³	44	29	77	1.1
Nitrite-N	g/m³	< 0.10 #1	0.006	0.059	0.004
Nitrate-N	g/m³	< 0.10	0.039	8.0	0.134
Nitrate-N + Nitrite-N	g/m³	< 0.10 #1	0.045	8.0	0.138
Total Kjeldahl Nitrogen (TKN)	g/m³	23	0.90	11.0	5.7
Total Phosphorus	g/m³	0.63	0.34	7.0	12.3
Carbonaceous Biochemical Oxygen Demand (cBOD ₅)	g O ₂ /m ³	-	< 2 #2	-	-
Cation Profile	<u> </u>				
Total Hardness g/m	³ as CaCO ₃	174	68	75	11.1
Dissolved Calcium	g/m³	43	11.1	22	2.0
Dissolved Magnesium	g/m³	16.0	9.7	5.1	1.5
Dissolved Potassium	g/m³	22	7.8	44	0.47
Dissolved Sodium	g/m³	71	77	300	11.9
Heavy metals, dissolved, trace As,C	d,Cr,Cu,Ni,Pb	o,Zn			
Dissolved Arsenic	g/m³	0.0056	0.0075	0.0033	< 0.0010
Dissolved Cadmium	g/m³	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Dissolved Chromium	g/m ³	0.0017	< 0.0005	< 0.0005	< 0.0005
Dissolved Copper	g/m³	0.0009	0.0069	0.0114	0.0113
Dissolved Lead	g/m³	< 0.00010	0.00012	0.00028	0.00055
Dissolved Nickel	g/m³	0.0056	0.0028	0.0016	0.0010
Dissolved Zinc	g/m³	0.0073	0.0149	0.0087	0.0169

Analyst's Comments

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Cation Profile		-	1-4
Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn	0.45µm Filtration, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.00005 - 0.0010 g/m ³	1-4

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

^{#1} Due to the nature of this sample a dilution was performed prior to analysis, resulting in a detection limit higher than that normally achieved for the NO2N, NO3N and NOxN analysis.

^{#2} The initial result for carbonaceous Biochemical Oxygen Demand (cBOD₅) was below detection limit due to over-dilution of the sample. In order to achieve a lower detection limit the cBOD₅ analysis was repeated on a sub-sample that had been stored frozen, using a larger volume.

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	1-4
Total Hardness	Calculation from Calcium and Magnesium. APHA 2340 B 23 rd ed. 2017.	1.0 g/m³ as CaCO₃	1-4
Dissolved Calcium	Filtered sample, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.05 g/m ³	1-4
Dissolved Magnesium	Filtered sample, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.02 g/m ³	1-4
Dissolved Potassium	Filtered sample, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.05 g/m ³	1-4
Dissolved Sodium	Filtered sample, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.02 g/m ³	1-4
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 rd ed. 2017.	0.5 g/m ³	1-4
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO ₃ - I (modified) 23 rd ed. 2017.	0.002 g/m ³	1-4
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - NO2N. In-House.	0.0010 g/m ³	1-4
Nitrate-N + Nitrite-N	Total oxidised nitrogen. Automated cadmium reduction, flow injection analyser. APHA 4500-NO ₃ -I (modified) 23 rd ed. 2017.	0.002 g/m ³	1-4
Total Kjeldahl Nitrogen (TKN)	Total Kjeldahl digestion, phenol/hypochlorite colorimetry. Discrete Analyser. APHA 4500-Norg D (modified) 4500 NH3 F (modified) 23 rd ed. 2017.	0.10 g/m ³	1-4
Total Phosphorus	Total phosphorus digestion, automated ascorbic acid colorimetry. Flow Injection Analyser. APHA 4500-P H (modified) 23 rd ed. 2017.	0.002 g/m ³	1-4
Carbonaceous Biochemical Oxygen Demand (cBOD₅)	Incubation 5 days, DO meter, nitrification inhibitor added, seeded. APHA 5210 B (modified) 23rd ed. 2017.	2 g O ₂ /m ³	2

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 04-Aug-2023 and 15-Aug-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental

125516 Lab Order No **Quote No** 294301 +64 7 858 2000

Primary Contact Aaron Thorburn Submitted By Aaron Thorburn 294301 **Client Name** Soil & Rock Consultants 48206 PO Box 21424, Henderson Address Auckland 0650, New Zealand 09 835 1740 Phone Mobile salen@soilandrock.co.nz Email Charge To Geotechnical Engineering Limited 150289 230599 - Fonterra Hautapu - 185 Swayne Client Reference Road, Cambridge (Contam) Additional Client Ref Order No Reports will be emailed to Primary Contact by default. Results To Additional Reports will be sent as specified below. Email Primary Contact Email Submitter Email Client Email Other Other Dates of testing are not routinely included in the Certificates of Analysis. Please inform the laboratory if you would like this information reported.

R J Hill Laboratories Limited 28 Duke Street Hamilton 3204 Private Bag 3205 Hamilton 3240, New Zealand

Date Recv: 17-Aug-23 17:07

0508 HILL LAB (44 555 22) Received by: Callum MacDonald

,	mail@hill-labs.co.nz www.hill-laboratories.com	3133451153
		STODY REGORD

Sent to Hill Laboratories	Date & Time:
Tick if you require COC	Name:
to be emailed back	Signature:
Received at	Date & Time:
Hill Laboratories	Name:
	Signature:
Condition	Temp:
Room Temp Chil	lled □Frozen /\$.3
Sample & Analysis del	tails checked
Sample & Analysis det Signature:	tails checked
Signature:	tails checked Normal High
Signature: Priority	☐ Normal ☑ High
Signature: Priority	☐ Normal
Signature: Priority Low	Normal High a charge applies, please contact lab first

Quoted Sample Types

Vo.	Sample Name	Sample Date/Time	Sample Type	Tests Required
1				
2				
3				
4				
5				
6				
7				
8				

Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

Page 1 of 1

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

55 0508 HILL LAB (44 555 22) **\(\sigma +64 7 858 2000 \)** mail@hill-labs.co.nz www.hill-labs.co.nz

Job Information Summary

Page 1 of 2

Soil & Rock Consultants

Aaron Thorburn Contact:

C/- Soil & Rock Consultants

PO Box 21424 Henderson Auckland 0650 Lab No: 3345115

Date Registered: 17-Aug-2023 5:38 pm

Priority: High **Quote No:** 125516

Order No:

Client Reference:

230599 - Fonterra Hautapu - 185 Swayne Road, Cambridge (Contam)

Add. Client Ref:

Submitted By:

Aaron Thorburn **Charge To:** Geotechnical Engineering Limited

Target Date: 28-Aug-2023 4:30 pm

Samples

No	Sample Name	Sample Type	Containers	Tests Requested
1	PZ02	Ground Water	BOD, S100, FN100	
2	PZ04	Ground Water	UP1L, BOD, S100, FN100	Nitrate-N; Carbonaceous Biochemical Oxygen Demand (cBOD ₅); Cation Profile; Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn; Chloride; Nitrite-N; Total Kjeldahl Nitrogen (TKN); Total Phosphorus
3	PZ10	Ground Water	UP1L, BOD, S100, FN100	Nitrate-N; Carbonaceous Biochemical Oxygen Demand (cBOD ₅); Cation Profile; Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn; Chloride; Nitrite-N; Total Kjeldahl Nitrogen (TKN); Total Phosphorus

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Cation Profile		-	2-3
Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn	0.45µm Filtration, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.00005 - 0.0010 g/m ³	2-3
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	2-3
Total Hardness	Calculation from Calcium and Magnesium. APHA 2340 B 23 rd ed. 2017.	1.0 g/m³ as CaCO₃	2-3
Dissolved Calcium	Filtered sample, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.05 g/m ³	2-3
Dissolved Magnesium	Filtered sample, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.02 g/m ³	2-3
Dissolved Potassium	Filtered sample, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.05 g/m ³	2-3
Dissolved Sodium	Filtered sample, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.02 g/m ³	2-3
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 rd ed. 2017.	0.5 g/m ³	2-3
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO ₃ · I (modified) 23 rd ed. 2017.	0.002 g/m ³	2-3
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - NO2N. In-House.	0.0010 g/m ³	2-3
Nitrate-N + Nitrite-N	Total oxidised nitrogen. Automated cadmium reduction, flow injection analyser. APHA 4500-NO₃⁻ I (modified) 23 rd ed. 2017.	0.002 g/m ³	2-3
Total Kjeldahl Nitrogen (TKN)	Total Kjeldahl digestion, phenol/hypochlorite colorimetry. Discrete Analyser. APHA 4500-Norg D (modified) 4500 NH3 F (modified) 23 rd ed. 2017.	0.10 g/m ³	2-3

Lab No: 3345115 Hill Labs Page 1 of 2

Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

Sample Type: Aqueous										
Test	Method Description	Default Detection Limit	Sample No							
Total Phosphorus	Total phosphorus digestion, automated ascorbic acid colorimetry. Flow Injection Analyser. APHA 4500-P H (modified) 23rd ed. 2017.	0.002 g/m ³	2-3							
Carbonaceous Biochemical Oxygen Demand (cBOD₅)	Incubation 5 days, DO meter, nitrification inhibitor added, seeded. APHA 5210 B (modified) 23rd ed. 2017.	2 g O₂/m³	2-3							

Document Set ID: 11223916 Version: 1, Version Date: 13/05/2024

Soil & Rock Consultants
Level 1, 131 Lincoln Rd Henderson
Auckland
NEW ZEALAND

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Page 1 of 9

Report Number: 1022943-S-V2

Attention: Aaron Thorburn

Report 1022943-S-V2

Project name

Project ID 230599
Received Date Sep 05, 2023

Client Sample ID			SS33	SS35	SS36	SS38
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23- Se0007174	K23- Se0007175	K23- Se0007176	K23- Se0007177
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit				
Metals M8 (NZ MfE)						
Arsenic	0.1	mg/kg	11	17	4.6	9.2
Cadmium	0.01	mg/kg	0.23	0.17	0.40	0.33
Chromium	0.1	mg/kg	7.1	7.6	6.9	6.5
Copper	0.1	mg/kg	8.5	5.6	8.9	9.4
Lead	0.1	mg/kg	11	11	13	12
Mercury	0.01	mg/kg	0.20	0.27	0.23	0.17
Nickel	0.1	mg/kg	2.7	2.7	2.7	2.5
Zinc	5	mg/kg	55	43	68	51
Sample Properties						
% Moisture	1	%	32	39	41	40

Client Sample ID			SS39	SS42	SS43	SS44	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			K23- Se0007178	K23- Se0007179	K23- Se0007180	K23- Se0007181	
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	
Test/Reference	LOR	Unit					
Metals M8 (NZ MfE)							
Arsenic	0.1	mg/kg	24	14	9.3	16	
Cadmium	0.01	mg/kg	1.1	0.36	1.4	0.36	
Chromium	0.1	mg/kg	23	19	18	17	
Copper	0.1	mg/kg	57	21	25	38	
Lead	0.1	mg/kg	330	350	49	140	
Mercury	0.01	mg/kg	0.36	0.32	0.25	0.23	
Nickel	0.1	mg/kg	11	6.8	7.3	9.3	
Zinc	5	mg/kg	550	290	170	180	
Sample Properties							
% Moisture	1	%	42	31	39	41	
Polycyclic Aromatic Hydrocarbons (NZ MfE)							
Acenaphthene	0.03	mg/kg	< 0.03	< 0.03	-	-	
Acenaphthylene	0.03	mg/kg	< 0.03	< 0.03	-	-	
Anthracene	0.03	mg/kg	< 0.03	< 0.03	-	-	
Benz(a)anthracene	0.03	mg/kg	0.05	< 0.03	-	-	
Benzo(a)pyrene	0.03	mg/kg	< 0.03	< 0.03	-	-	

Client Sample ID Sample Matrix Eurofins Sample No.			SS39 Soil K23- Se0007178	SS42 Soil K23- Se0007179	SS43 Soil K23- Se0007180	SS44 Soil K23- Se0007181
Date Sampled			Jun 29, 2023	Jun 29, 2023	Jun 29, 2023	Jun 29, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons (NZ MfE)						
Benzo(a)pyrene TEQ (lower bound)*	0.03	mg/kg	< 0.03	< 0.03	-	-
Benzo(a)pyrene TEQ (medium bound)*	0.03	mg/kg	0.04	0.04	-	-
Benzo(a)pyrene TEQ (upper bound)*	0.03	mg/kg	0.08	0.08	-	-
Benzo(b&j)fluorantheneN07	0.03	mg/kg	< 0.03	< 0.03	=	-
Benzo(g.h.i)perylene	0.03	mg/kg	< 0.03	< 0.03	=	-
Benzo(k)fluoranthene	0.03	mg/kg	0.03	< 0.03	=	-
Chrysene	0.03	mg/kg	0.09	< 0.03	=	-
Dibenz(a.h)anthracene	0.03	mg/kg	< 0.03	< 0.03	=	-
Fluoranthene	0.03	mg/kg	0.10	< 0.03	=	-
Fluorene	0.03	mg/kg	< 0.03	< 0.03	=	-
Indeno(1.2.3-cd)pyrene	0.03	mg/kg	< 0.03	< 0.03	=	-
Naphthalene	0.1	mg/kg	< 0.1	< 0.1	-	-
Phenanthrene	0.03	mg/kg	< 0.03	< 0.03	-	-
Pyrene	0.03	mg/kg	0.12	< 0.03	-	-
Total PAH*	0.1	mg/kg	0.4	< 0.1	-	-
p-Terphenyl-d14 (surr.)	1	%	105	95	-	-
2-Fluorobiphenyl (surr.)	1	%	99	93	-	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SS46 Soil K23- Se0007182 Jun 29, 2023
Test/Reference	LOR	Unit	
Metals M8 (NZ MfE)			
Arsenic	0.1	mg/kg	17
Cadmium	0.01	mg/kg	0.27
Chromium	0.1	mg/kg	16
Copper	0.1	mg/kg	33
Lead	0.1	mg/kg	51
Mercury	0.01	mg/kg	0.09
Nickel	0.1	mg/kg	15
Zinc	5	mg/kg	140
Sample Properties			
% Moisture	1	%	32

Page 2 of 9

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Metals M8 (NZ MfE)	Auckland	Sep 12, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Polycyclic Aromatic Hydrocarbons (NZ MfE)	Auckland	Sep 06, 2023	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water by GC MSMS			
% Moisture	Auckland	Sep 05, 2023	14 Days

- Method: LTM-GEN-7080 Moisture Content in Soil by Gravimetry

Page 3 of 9

Eurofins Environment Testing NZ Ltd

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose. Rolleston. Auckland 1061 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa. Christchurch 7675 Tauranga 3112 IANZ# 1402

Eurofins Environment Testing Australia Pty Ltd

Site# 25403

ABN: 50 005 085 521 6 Monterey Road

Dandenong South

Melbourne

VIC 3175

NATA# 1261

Site# 1254

Geelong Sydney 19/8 Lewalan Street Grovedale VIC 3216 NATA# 1261

Canberra 179 Magowar Road Unit 1.2 Dacre Street Girraween Mitchell NSW 2145 ACT 2911 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 NATA# 1261 NATA# 1261 Site# 18217 Site# 25466

Brisbane Newcastle 1/21 Smallwood Place 1/2 Frost Drive Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794

Mayfield West NSW 2304 Tel: +61 2 4968 8448 Site# 25079 & 25289

Eurofins ARL Pty Ltd ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377

Site# 2370

Company Name:

Soil & Rock Consultants

Address:

Level 1, 131 Lincoln Rd Henderson

Auckland

NEW ZEALAND

Project Name: Project ID:

230599

230599 Order No.: Report #: 1022943

Phone: 0011 64 9 835 1740

Fax: 0011 64 9 835 1847

Sep 5, 2023 12:00 AM Received:

Due: Sep 6, 2023 Priority: 1 Day

Contact Name: Aaron Thorburn

Eurofins Analytical Services Manager: Katyana Gausel

	Sample Detail Auckland Laboratory - IANZ# 1327									
Aucl	dand Laborato	ry - IANZ# 1327				Χ	Х	Х		
Chris	stchurch Labor	atory - IANZ# 1	290							
Taur	anga Laborato	ry - IANZ# 1402								
Exte	rnal Laboratory	<u>'</u>								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	SS33	Jun 29, 2023		Soil	K23-Se0007174	Χ	Х			
2	SS35	Jun 29, 2023		Soil	K23-Se0007175	Χ	Х			
3	SS36	Jun 29, 2023		Soil	K23-Se0007176	Χ	Х			
4	SS38	Jun 29, 2023		Soil	K23-Se0007177	Χ	Х			
5	SS39	Jun 29, 2023		Soil	K23-Se0007178	Χ	Х	Х		
6	SS42	Jun 29, 2023		Soil	K23-Se0007179	Χ	Х	Х		
7	SS43	Jun 29, 2023		Soil	K23-Se0007180	Χ	Х			
8	SS44	Jun 29, 2023		Soil	K23-Se0007181	Χ	Х			
9	SS46	Jun 29, 2023		Soil	K23-Se0007182	Х	Х			
Test	Counts					9	9	2		

Page 4 of 9

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Date Reported: Sep 12, 2023
Document Set ID: 11223916
Version: 1, Version Date: 13/05/2024

First Reported: Sep 11, 2023

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Metals M8 (NZ MfE)					
Arsenic	mg/kg	< 0.1	0.1	Pass	
Cadmium	mg/kg	< 0.01	0.01	Pass	
Chromium	mg/kg	< 0.1	0.1	Pass	
Copper	mg/kg	< 0.1	0.1	Pass	
Lead	mg/kg	< 0.1	0.1	Pass	
Mercury	mg/kg	< 0.01	0.01	Pass	
Nickel	mg/kg	< 0.1	0.1	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons (NZ MfE)					
Acenaphthene	mg/kg	< 0.03	0.03	Pass	
Acenaphthylene	mg/kg	< 0.03	0.03	Pass	
Anthracene	mg/kg	< 0.03	0.03	Pass	
Benz(a)anthracene	mg/kg	< 0.03	0.03	Pass	
Benzo(a)pyrene	mg/kg	< 0.03	0.03	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.03	0.03	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.03	0.03	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.03	0.03	Pass	
Chrysene	mg/kg	< 0.03	0.03	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.03	0.03	Pass	
Fluoranthene	mg/kg	< 0.03	0.03	Pass	
Fluorene	mg/kg	< 0.03	0.03	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.03	0.03	Pass	
Naphthalene	mg/kg	< 0.1	0.03	Pass	
Phenanthrene	mg/kg	< 0.03	0.03	Pass	
Pyrene	mg/kg	< 0.03	0.03	Pass	
LCS - % Recovery	IIIg/kg	< 0.03	0.03	Fass	
Metals M8 (NZ MfE)					
Arsenic	%	93	80-120	Pass	
Cadmium	%	106	80-120	Pass	
Chromium	%	89	80-120	Pass	
	%				
Copper		93	80-120	Pass	
Lead	%	92	80-120	Pass	
Mercury	%	96	80-120	Pass	
Nickel	%	90	80-120	Pass	
Zinc	%	91	80-120	Pass	
LCS - % Recovery				l	
Polycyclic Aromatic Hydrocarbons (NZ MfE)	0/	100	70.400	_	
Acenaphthene	%	102	70-130	Pass	
Acenaphthylene	%	103	70-130	Pass	
Anthracene	%	114	70-130	Pass	
Benz(a)anthracene	%	99	70-130	Pass	
Benzo(a)pyrene	%	92	70-130	Pass	
Benzo(b&j)fluoranthene	%	77	70-130	Pass	
Benzo(g.h.i)perylene	%	86	70-130	Pass	
Benzo(k)fluoranthene	%	75	70-130	Pass	
Chrysene	%	117	70-130	Pass	
Dibenz(a.h)anthracene	%	84	70-130	Pass	
Fluoranthene	%	104	70-130	Pass	
Fluorene	%	100	70-130	Pass	

Page 6 of 9

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Indeno(1.2.3-cd)pyrene			%	82			70-130	Pass	
Naphthalene			%	108			70-130	Pass	
Phenanthrene			%	87			70-130	Pass	
Pyrene			%	109			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	ı				
Metals M8 (NZ MfE)		1		Result 1					
Cadmium	K23-Au0075352	NCP	%	107			75-125	Pass	
Spike - % Recovery					1				
Metals M8 (NZ MfE)				Result 1					
Arsenic	K23-Se0007175	CP	%	102			75-125	Pass	
Cadmium	K23-Se0007175	CP	%	112			75-125	Pass	
Chromium	K23-Se0007175	CP	%	113			75-125	Pass	
Copper	K23-Se0007175	CP	%	110			75-125	Pass	
Lead	K23-Se0007175	CP	%	110			75-125	Pass	
Mercury	K23-Se0007175	CP	%	115			75-125	Pass	
Nickel	K23-Se0007175	CP	%	106			75-125	Pass	
Zinc	K23-Se0007175	CP	%	113			75-125	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocart	oons (NZ MfE)			Result 1					
Acenaphthene	K23-Au0078552	NCP	%	106			70-130	Pass	
Acenaphthylene	K23-Au0078552	NCP	%	104			70-130	Pass	
Anthracene	K23-Au0078552	NCP	%	103			70-130	Pass	
Benz(a)anthracene	K23-Au0078540	NCP	%	101			70-130	Pass	
Benzo(a)pyrene	K23-Au0078552	NCP	%	107			70-130	Pass	
Benzo(b&j)fluoranthene	K23-Au0078552	NCP	%	108			70-130	Pass	
Benzo(g.h.i)perylene	K23-Au0078552	NCP	%	91			70-130	Pass	
Benzo(k)fluoranthene	K23-Au0078552	NCP	%	102			70-130	Pass	
Chrysene	K23-Au0078552	NCP	%	116			70-130	Pass	
Dibenz(a.h)anthracene	K23-Au0078552	NCP	%	94			70-130	Pass	
Fluoranthene	K23-Au0078552	NCP	%	98			70-130	Pass	
Fluorene	K23-Au0078552	NCP	%	91			70-130	Pass	
Indeno(1.2.3-cd)pyrene	K23-Au0078552	NCP	%	95			70-130	Pass	
Naphthalene	K23-Au0078552	NCP	%	108			70-130	Pass	
Phenanthrene	K23-Au0078552	NCP	%	77			70-130	Pass	
Pyrene	K23-Au0078552	NCP	%	105			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Metals M8 (NZ MfE)				Result 1	Result 2	RPD			
Arsenic	Z23-Se0006190	NCP	mg/kg	56	75	29	30%	Pass	
Cadmium	Z23-Se0006190	NCP	mg/kg	63	63	<1	30%	Pass	
Chromium	Z23-Se0006190	NCP	mg/kg	67	76	12	30%	Pass	
Copper	Z23-Se0006190	NCP	mg/kg	64	78	20	30%	Pass	
Lead	Z23-Se0006190	NCP	mg/kg	110	110	7.5	30%	Pass	
Mercury	Z23-Se0006190	NCP	mg/kg	0.02	0.02	10	30%	Pass	
Nickel	K23-Se0007174	СР	mg/kg	2.7	2.3	16	30%	Pass	
Zinc	Z23-Se0006190	NCP	mg/kg	260	360	30	30%	Pass	
Duplicate									
Sample Properties				Result 1	Result 2	RPD			
% Moisture	K23-Se0007174	СР	%	32	33	5.1	30%	Pass	
70 MOISTUIC	1120 060007174		/0	1 32		J. 1	30 /0	1 433	l

Page 7 of 9

Duplicate									
Polycyclic Aromatic Hydrocarbons (NZ MfE)					Result 2	RPD			
Acenaphthene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Acenaphthylene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Anthracene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benz(a)anthracene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(a)pyrene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(b&j)fluoranthene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(g.h.i)perylene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Benzo(k)fluoranthene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Chrysene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Dibenz(a.h)anthracene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Fluoranthene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Fluorene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Naphthalene	K23-Au0078551	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Phenanthrene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Pyrene	K23-Au0078551	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	

Page 8 of 9

Comments

This report has been revised (V2) following repeat analysis. Metals results for all samples have now been replaced by the repeat results.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Please note: These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

Katyana Gausel Analytical Services Manager Raymond Siu Senior Analyst-Metal Raymond Siu Senior Analyst-Organic

Senior Instrument Chemist (Key Technical Personnel)

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates IANZ accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.